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Abstract

Content-based file-type identification schemes often use byte-frequency distri-
bution as a feature and use statistical and data mining techniques to classify
file types. Since those schemes use the entire file content to obtain byte-
frequency distribution and use all possible byte patterns in file classification,
they are inefficient and time-consuming. This paper proposes two techniques
to reduce the classification time. The first method is a feature selection
technique, which uses a subset of highly-occurring byte patterns in building
the representative model of a file type and classifying files. To evaluate its
effectiveness, we applied it to the six most popular classification algorithms
(i.e. neural network, linear discriminant analysis, K-means, K-nearest neigh-
bor, decision tree, and support vector machine). On average, the K-nearest
neighbor method achieved the optimum accuracy of 90% using only 40% of
byte patterns; this reduces 55% of computation time. The second method is
the content sampling technique, which uses a small portion of a file to ob-
tain its byte-frequency distribution. It is effective for large size files where a
relatively small sample can generate the representative byte frequency distri-
bution. For instance, it reduces the sampling size of MP3 files from 5MB to
400KB (without compromising the accuracy). This is a 15 fold size reduction.
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1. Introduction

Identifying file types (ASP, JPG, EXE, etc.) is a non-trivial task that
is required in many computer applications. For example, file carving [2,
3], which is a forensics technique, recovers files using file content. Many
steganalysis programs, such as stegdetect [4] that detects steganographic
contents in images, rely on file type identification as well.

File types are usually identified by the file extensions [5] or the magic
numbers in the file header [6]. However, these methods can easily be deceived
by changing the file extension or magic number. Therefore, especially in the
presence of adversaries, a more reliable solution is needed. Analyzing file
contents to find distinguishable patterns between different file types is a
viable alternative but it is not wide spread, because it is inefficient and time-
consuming. Existing approaches generate the byte-frequency distribution of a
file and use it for classification with statistical or data mining techniques. The
calculations required for the distribution may be time consuming because it
scales with file size. Also, classifying file types with distributions may require
a large memory space and computation time, since the computation time
exponentially increases with the number of sequences of n-bytes (n-gram).

This paper proposes two approaches to reduce the classification time.
Firstly, we propose a feature selection technique to reduce the memory space
and the computation time of a classification algorithm. The idea is that a
subset of high-frequency byte patterns may be sufficient to build the repre-
sentative model of a file type. Using a subset of high-frequency byte patterns
may even increase the classification accuracy, since low-frequency patterns
are highly likely to be simple noise.

In the feature selection technique, we extract a certain percentage of high-
frequency byte patterns from each type of files (we used the ten file types
described in table 2). Since each file type shows a different set of high-
frequency byte patterns, we merge the byte pattern sets of all file types into
a unified feature set by using the union or intersection operation. We tested
the proposed feature selection algorithm on the six most popular classifi-
cation algorithms (classifiers): neural network, linear discriminant analysis,
K-means, K-nearest neighbor (KNN), decision tree, and support vector ma-
chine. Our empirical results show that KNN achieves the highest accuracy
of about 90% using only 40% of (1-gram) byte patterns.

Secondly, instead of using the entire file content, we propose a content
sampling technique to reduce the time taken for obtaining the byte-frequency
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distribution. To evaluate the effectiveness of this approach, we sample in two
ways: 1) sampling initial contiguous bytes and 2) sampling a few small blocks
in random locations in a file. Sampling initial contiguous bytes is also used
by Li et al. [7] based on single-centroid, multi-centroid and exemplar files.
However, their models are unable to identify similar file types such as text
files (TXT, ASP and HTML) that only contain ASCII or printable characters.
In this paper, we provide more general experiments to evaluate the sampling
approach.

The rest of the paper is organized as follows. Section 2 presents the
related work. The proposed techniques are described in Section 3. Section
4 describes the six classification algorithms used in our experiments. The
empirical results are presented in Section 5, followed by the conclusions and
future work in Section 6.

2. Related work

This section discusses various content-based file-type identification schemes
based on the byte-frequency distribution.

McDaniel and Heydari [8] introduced three algorithms to analyze file con-
tent and identify file types. The byte-frequency analysis algorithm (BFA)
computes the byte-frequency distribution of different files and generates a
”fingerprint” of each file type by averaging the byte-frequency distribution
of their respective files. To obtain another characterizing factor, they also
calculate the correlation strength as by taking the difference between the
same byte in different files. As the difference becomes smaller, the corre-
lation strength approaches to 1, and vice versa. The byte-frequency cross-
correlation algorithm finds the correlations between all byte pairs. It calcu-
lates the average frequencies of all byte pairs and the correlation strength in
a similar manner to the BFA algorithm. The file header/trailer algorithm
uses the byte-patterns of the file headers and trailers that appear in a fixed
location at the beginning and end of a file, respectively. It maintains an
array of size 256 for each location and the array entry corresponding to the
byte is filled with the correlation strength of 1. It constructs the fingerprint
by averaging the correlation strength of each file. In these algorithms, they
compare the file with all the generated fingerprints in order to identify its
file type.

Li et al. [7] used n-gram analysis to calculate the byte-frequency distri-
bution of a file and build three different models of a file type, i.e. single
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centroid (one model of each file type), multi-centroid (multiple models of
each file type), and exemplar files (set of files of each file type) as centroid.
They refer to them as a ”fileprint”. The single and multi-centroid models
compute the mean and standard deviation of the byte-frequency distribu-
tion of the files of a given file type, which is then used for the Mahalanobis
distance to find the file type with the closest model. In the exemplar file
model, they compare the byte frequency distribution of exemplar files with
that of the given file (there is no variance computed), and the Manhattan
distance is used instead of the Mahalanobis distance. Their solution cannot
identify files having similar byte-frequency distributions such as MS Office
file formats (e.g. Word and Excel) but instead treats them as a single group
or abstract file type.

Martin and Nahid [9, 10] proposed the ”Oscar” method to identify a file
fragment type. They use the single centroid model [7] of Li et al. and use
a quadratic distance metric and 1-norm as a distance metric to compare the
centroid with the byte-frequency distribution of a given file. Although their
method identifies any file type, they have specifically optimized it for JPG
files. They reported a 99.2% detection rate with no false positives.

Veenman [11] uses linear discriminant analysis to identify file types. Three
features are obtained from the file content, i.e. the byte frequency distribu-
tion, the entropy derived from the byte-frequency distribution of files, and the
algorithmic or Kolmogorov complexity that exploits the substring order [12].
Calhoun and Coles [13] extended Veenman’s work and built classification
models that are based on the ASCII frequency, entropy, and other statis-
tics and apply linear discriminant analysis to identify file types. They also
argued that the files of same type probably have longer common substrings
than those of different types. Veenman reported a 45% overall accuracy.

Harris [14] uses neural networks to identify file types. He divides the
files into blocks of 512 bytes, and uses only the first 10 blocks for file-type
identification. Two features are obtained from each block, i.e. raw filtering
and the character code frequency. Raw filtering takes each byte as an input
to a single neuron of the neural network. On the other hand, the character
code frequency counts how many times each character code occurs in the
block and takes the frequency of the character as the input to the neurons.
It is assumed that raw filtering is useful for files whose byte patterns would
occur at regular intervals, while the character code frequency is useful for
files which have irregular occurrences of byte patterns. He used only image
files (JPG, PNG, TIFF, GIF, and BMP) as a sample set and reported a
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detection rate from 1% (GIF) to 50% (TIFF) when using raw filtering and
from 0% (GIF) to 60% (TIFF) when using the character code frequency.

Amirani et al. [15] use a hierarchical feature-extraction method to better
exploit the byte-frequency distribution of files in file-type identification. They
believe that the multiplicity of features degrades the speed and accuracy in
file-type identification. Thus, they utilize principal component analysis and
auto-associative neural networks to reduce the 256 features of byte patterns
to a smaller number (where the detection error is negligible). After feature
extraction, they use a three layer MLP (multi layer perceptron) for detect-
ing the file types. They used DOC, PDF, EXE, JPG, HTML and GIF file
types for the experiments (each having 30 test data points) and reported an
accuracy of 98.33%.

In our paper [16], we proposed two approaches to improve the accuracy
of file-type classification. The first approach compares the cosine similarity
and Mahalanobis distance to show that the cosine similarity is a better com-
parison metric in terms of the detection speed and classification accuracy.
It optimizes the processing time by using a subset of high-frequency byte
patterns. This method is different from the proposed method in that it uses
a different set of byte patterns for each file type, whereas our method com-
bines the sets of byte patterns (using the union or intersection operation) to
make a single set of features for identifying all file types. Another difference
is that it only uses the cosine similarity and Mahalanobis distance for classi-
fication, whereas our method uses the six most popular classifiers and shows
their accuracy in order to prove the effectiveness of the feature selection ap-
proach in general. The second approach groups the files irrespective of file
types and then applies linear discriminant analysis to subsequently distin-
guish files in each group for better classification accuracy. We reported 70%
and 77% overall classification accuracy using the first and second approaches,
respectively.

3. Proposed approaches

This section describes the two proposed approaches for fast file-type iden-
tification. 1) The feature selection technique reduces the classification time.
2) The (file) content sampling technique reduces the time taken to obtain
the byte-frequency distribution, which is used by the classifier.
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% of
high fre-
quency
byte
patterns

Number
of pat-
terns
after
Union

% of
fea-
tures
se-
lected
(Union)

Number of
patterns
after In-
tersection

% of fea-
tures se-
lected
(Intersection)

10 102 39.84 - -
20 155 60.54 - -
30 202 78.90 2 0.78
40 236 92.18 6 2.34
50 247 96.48 15 5.85
60 253 98.82 33 12.89
70 256 100 51 19.92
80 - - 75 29.29
90 - - 122 47.65
100 - - 256 100

Table 1: Percentages of high-frequency byte patterns (features) per file type, and the
corresponding sets of (unified) features that are chosen by the union and intersection
operation.

3.1. Feature selection technique

Assuming that a few of the most frequently occurring byte patterns may
be sufficient to represent the file type, we propose to use a subset of high-
frequency byte patterns as features. Since each file type has a different set of
high-frequency byte patterns, we merged the sets of patterns into a unified
set of features for all file types. This will be fed into the classifier.

For merging we used two strategies: union and intersection. The union
combines the feature sets of all file types, and the intersection extracts the
common set of features among the file types. The result of the union oper-
ation may include low-frequency byte patterns for certain file types, if those
patterns occur frequently in other file types. In contrast, the result of the
intersection operation guarantees that only the high-frequency byte patterns
are included, but some of them will be omitted if they do not occur frequently
in all file types.

3.2. Content sampling technique

Obtaining the byte-frequency distribution may be hugely time consuming
if the whole file is used. Instead of using the entire file content, and assuming
that partial file content may be enough to generate a representative byte-
frequency distribution of the file type; we propose to sample the file content
to reduce the time taken to obtain the byte-frequency distribution.

To evaluate the effectiveness of this approach, we sample in two ways: 1)
sampling initial contiguous bytes 2) sampling a few small blocks in random
locations in a file. The first method is the fastest way of sampling, but the
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obtained data are location-dependent and hence may be biased. The second
method gathers location-independent data and thus is free from such prob-
lems, but is slower than the first method (albeit much faster than using the
whole file) because files are sequentially accessed medium. We can intuitively
say that the second method (random sampling) can generate a better byte
frequency distribution because the range of sampling covers whole the file.
Thus, it can achieve better classification accuracy while keeping the sample
size the same. We explain the accuracy of this technique later in section 5.3.

Random sampling is novel in file type identification, however, initial con-
tiguous bytes sampling was also used by Harris [14] and Li et al. [7]. Harris
randomly chose the sample size of 512 bytes. On the other hand, Li et al.
took different sample sizes of upto 1000 bytes and showed that as the sam-
ple size increased the classification accuracy decreased. They achieved the
optimum accuracy when using the initial 20 bytes of a file (i.e. file header).
Thus, intuitively we can say that their scheme is header-dependent. How-
ever, our sampling technique is header-independent because we consider a
relatively large block of a file (400KB was found to be the optimum) to gen-
erate the byte frequency distribution, where the few header bytes cannot
change the distribution. In this paper, we argue about the optimum block
size and whether the content sampling is effective for all given file types. To
investigate, we increase the block size until we obtain a consistent accuracy
for a given file type or until the whole file content is sampled.

4. Classification Algorithms

To prove the effectiveness of the feature selection technique, we tested
it on the six most popular classifiers: neural network, linear discriminant
analysis, k -means, k -nearest neighbor, decision tree, and support vector ma-
chine. This section explains how these algorithms are applied to file-type
identification. The classification accuracy is computed using the following
measure.

Accuracy(%) =
(Number of correctly predicted files)× 100

Total number of files
(1)

To normalize the file sizes, we scaled their byte-frequency distribution
from 0 to 1 by dividing each file’s byte-pattern frequency by the file size
(relative byte frequency).

7



4.1. Neural network (NN)

The neural network [17] is a non-linear classifier. We use a three-layered
network. It has 256 input nodes and 6 hidden nodes. The 256 input nodes
represent the byte patterns whose frequencies are passed as input values to
the nodes. The number of hidden nodes is set to 6 as there is no further
improvement seen in the classification accuracy. The activation function is a
hyperbolic tangent and the learning rate is 0.1 as in Dua et al.[18].

4.2. Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) [19] finds linear combinations of byte
patterns by deriving a discriminant function for each file type. The dis-
criminant function is used to identify the type of test file. The output of a
linear discriminant function, the discriminant score, is used to identify the
file types.

4.3. K-means

K-means [17] computes one centroid for each file type by averaging the
byte frequency distribution of the sample files of each file type. We also
calculate the standard deviation as another characterizing factor of file types
in order to compute Mahalanobis distance. At the detection time, it uses the
Mahalanobis distance and computes the distance between the test file and
the centroids of all file types. The file type having the least distance from its
centroid to the test file is considered to be the file type of the test file.

4.4. Decision tree (DT)

The decision tree [17] maps the byte-frequency patterns into a tree struc-
ture reflecting the file types. In other words, the internal nodes correspond
to the 256 byte patterns and the leaf nodes correspond to the file types. In
the learning phase, the tree is built by selecting the byte patterns that best
split the training files into their true file types. In the prediction phase, a
test file traverses the tree from the root to the leaf nodes. The file type
corresponding to the leaf node (given in the learning phase) is the predicted
file type of the test file.
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4.5. K-nearest neighbor (KNN)

K-nearest neighbor [17] is a lazy learner, which implies that it uses the
sample files only when a test file is given. It calculates the distance of the
test file from other sample files (the Manhattan distance is the metric). The
majority file type among the k nearest files is the file type of the test file.
The classification accuracy is calculated for all values of k i.e. from 1 to
the number of sample files and the value of k corresponds to the highest
classification accuracy.

4.6. Support vector machine (SVM)

The support vector machine [20, 17] is a linear machine working in a high-
dimensional nonlinear feature space, and separating two classes by finding a
hyperplane with a maximal margin between them. In case when the classes
are not linearly separable in the original input space, it first transforms the
original input space into a high dimensional feature space.

Given a training set with instances and class-label pairs (xi, yi) where
i=1,2,...,m and xiε R

n, yiε{1,−1}m, the function φ maps the training vector
xi into a high dimensional space to find a linear separating hyperplane with a
maximal margin. The kernel function used for transformation can be defined
as K(xi, xj) ≡ φ(xi)

Tφ(xj).
After learning the models, the test instances are predicted. Let z1, z2, ..., zk

be the k test instances and f(z1), f(z2), ..., f(zk) be their predicted decision
values. If the true target values of test instances are known and represented
as y1, y2, ..., yk, the classification accuracy is measured as follows:

Accuracy =| i|yif(zi) > 0 | /(k × 100) (2)

We aim to classify r multiple file types where r > 2. Since SVM is
originally a model for binary classification, the ”one-against-one approach”
[21] is used for multiple-class classification. For r file types, it constructs
fi(x) classifiers where i = 1, 2, ..., r(r − 1)/2. Each classifier trains data
from two different file types. After training, we need to aggregate several
independently trained SVMs to identify a true file type of a test instance.
For this we use majority voting. Let fi be the decision function of the SVMi

and Cj(j = 1, 2, ..., C) be the jth class label, and Nkj be the number of SVMs
whose decisions select the jth class i.e. Nkj = |{(i|fi(xk) = Cj)}|. The final
decision for test instance xk is determined by majority voting as follows:
Nk = max(Nkj).
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S.No. File type Quantity Average Size Minimum Size Maximum Size
(Kilo Bytes) (Bytes) (Kilo Bytes)

1. ASP 500 3.52 49 37
2. DOC 500 306.44 219 7,255
3. EXE 500 522.71 882 35,777
4. GIF 500 3.24 64 762
5. HTML 500 11.59 117 573
6. JPG 500 1,208.27 21,815 7,267
7. MP3 500 6,027.76 235 30,243
8. PDF 500 1,501.12 219 32,592
9. TXT 500 269.03 16 69,677
10. XLS 500 215.98 80 9,892

Table 2: Details of dataset used for experiments

5. Empirical results

5.1. Dataset

We used 10 file types (HTML, PDF, JPG, EXE, GIF, TXT, DOC, MP3,
ASP, and XLS) and there were 500 files of each type (refer to Table 2 for more
details). 60% and 40% of the dataset was used as the training and test dataset
for learning of the given algorithms and testing their classification accuracies,
respectively. The file types in the dataset were chosen because they are
popularly used and cover a broad range of file types including documents,
executable and compressed files.

We collected the sample files from different sources to ensure that the
sample files of a file type are not generated by one source. Thus, the ex-
ecutable files are mostly obtained from the bin and system32 folders from
the Linux and Windows XP operating systems, respectively. Moreover, the
other files are collected from the internet using a general search on Google.
For example, .txt file was searched using option ”filetype:txt”. The image
files such as GIF and JPG are also obtained from photo sharing websites
such as picassa of google and flickr etc. The MP3 files are collected from
different random sources mostly from the publicly available FTP servers for
movies and personal computers. In short, the random collection of files can
be considered an unbiased and representative sample of the given file types.

5.2. Feature selection

The given classifiers are applied to the dataset in order to compare their
classification accuracies. The proposed feature selection technique is used to
decrease the number of features for efficient detection without compromising
the accuracy.
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SVM
Types

Kernel Types

Linear Polynomial RBF Sigmoid

C-SVM 59.07 29.69 37.68 79.42
nu-SVM 89.80 29.68 84.86 79.41
One class
SVM

0 0 13.94 0

Table 3: Comparison of SVM accuracy with respect to kernel types.

Figure 1: Average classification accuracies of the six classifiers. Features are selected using
the union and intersection operations.

When using SVM, the choice of the SVM and kernel type is nontrivial with
respect to the optimum classification results. Currently, we use four basic
kernel functions (linear, polynomial, radial basis function, and sigmoid) and
three SVM types (C-SVM, nu-SVM and one class SVM). Table 3 shows the
SVM comparison with respect to the kernel type. It is shown that nu-SVM
performs the best with the linear kernel type. Thus, for comparing SVM
with other given algorithms, we use nu-SVM with linear kernel type.

We use the union and intersection to obtain a single unified set of byte
patterns for all file types. It is noticed that the intersection operation obtains
fewer features when the same percentage of high frequency byte patterns are
used. For instance, for 30% of high frequency patterns (refer to Table 1),
after the union the resultant set contained 79% of patterns, however, the
intersection selected only two patterns which is 0.78% of all patterns.

We find the classification accuracy of all given file types for different
percentages of highly-occurring byte patterns in order to find the optimum
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File types NN DT LDA K-means KNN SVM

ASP 99
�� �� 98 99

�� �� 32.5 98.5 95.5
DOC 88

�� �� 80.5 81.5 58 87 75.5
EXE 99

�� �� 95.5 91 91.5 96 87
GIF 99.5 94.5 90.5 100

�� �� 91 90.5
HTML 53 60 60 18.5 73.5

�� �� 66
JPG 67 84 92 8 90 92.5

�� ��
MP3 98 93.5 98 14 99.5

�� �� 96
PDF 94 94 90.5 78 97

�� �� 95
TXT 80 79 3 95.5

�� �� 90 88.5
XLS 89.5 88.5 87 84.5 82.5 95

�� ��
Table 4: The accuracies of classifiers for each file type, using 40% of the byte patterns
obtained by the union operation. The circled cells show the highest accuracy for each file
type.

accuracy for a subset of byte patterns and determine whether it remains
reasonably stable when the highly-occurring byte patterns are increased in
the subset. Figure 1 shows the average classification accuracies of the clas-
sifiers (using the features obtained from the union and intersection). It is
noticed that the union shows more consistent accuracy than the intersection
as the number of highly-occurring byte patterns increases. It is quite obvious,
because unlike the intersection, the union contains all the highly-occurring
byte patterns of all given file types and we assume (refer to section 3.1) that
highly-occurring byte patterns are sufficient to represent a file type. Figure 1
shows that on average, KNN is the most accurate classifier among the tested
algorithms. It produces about 90% accuracy using 40% of the features ob-
tained using the union operation. If we use the intersection operation, we
can further reduce the number of features without compromising the accu-
racy much. For instance, we can achieve an 88.45% accuracy using only 20%
of the features.

Table 4 and 5 show that there is no single classifier which performs best
for all given file types. However for most of the given file types the given clas-
sifiers (except K-means) achieve a similar classification accuracy. K-means
is the simplest among all the given classifiers. It builds a single centroid for
each file type by averaging the byte frequency distribution of its files. We
investigated why the k -means classifier cannot achieve as higher accuracy as
the other ones. It is found that the files of a file type can have different
byte frequency distributions and averaging these results an inaccurate rep-
resentative model of the file type. Thus, it results in a high misclassification
rate.

At this point, it is important to understand why none of the given clas-
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File types NN DT LDA K-means KNN SVM

ASP 93 95.5 99.5
�� �� 26 98.5 91.5

DOC 87.5 84.5 74.5 40 88.5
�� �� 77

EXE 96.5 83 91 73.5 97
�� �� 87.5

GIF 95
�� �� 80 88 79 82 93

HTML 53 68
�� �� 66.5 6.5 74 63.5

JPG 89 87.5 89 5.5 87.5 90.5
�� ��

MP3 98 93 98 5 99.5
�� �� 95.5

PDF 92 88.5 74 67 94.5 95
�� ��

TXT 79.5 86.5 76.5 98.5
�� �� 82.5 87

XLS 89 10.5 89.5 73.5 87.5 95
�� ��

Table 5: The accuracies of classifiers for each file type, using 40% of the byte patterns
obtained by the intersection operation. The circled cells show the highest accuracy for
each file type.

sification algorithms succeeded in accurately classifying the given file types.
We obtain the confusion matrix of the given file types for 40% percentages of
highly occurring byte patterns using the NN, DT and KNN classifiers (refer
to Table 6). It is found that the similar types of files can be confused with
each other. For instance; HTML files can be confused with ASP and TXT
files and compound files such as XLS and DOC can be confused with each
other.

In short, many classifiers show an accuracy of about 90% using 40% of
features and this level of accuracy remains almost the same when the number
of features is increased. Therefore we can conclude that the feature selection
approach is effective. However, the accuracy of classifiers is dependent on
the file types in question. If the given set contains confusing file types, it is
highly likely that the accuracy will be low.

5.3. Content sampling

Since KNN performs best and achieves an optimum accuracy for 40%
of features (selected using the union operation) (refer to Figure 1), we used
KNN (with 40% of byte patterns) in our experiments for the content sampling
technique.

Figure 2 and 3 show the classification accuracies for ten file types, which
are grouped into three categories: binary group, text group, and binary-
text group. These groups contain binary, ASCII or printable characters and
compound files, respectively.

Figure 2 shows the result of initial contiguous byte sampling. It is noticed
that the classification accuracy of file types shows extreme deviation i.e.
either 0% or 100% when using the initial two bytes of a file. In general, the
use of the first two bytes of a file is more likely to be signature matching,
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File types Classifier ASP DOC EXE GIF HTM JPG MP3 PDF TXT XLS

ASP NN 94 0.5 0 0 4 0 0 0 1.5 0
KNN 98.5 0 0 0 1.5 0 0 0 0 0
DT 98 1.5 0 0 0.5 0 0 0 0 0
Average 96.83 0.66 0 0 2.0 0 0 0 0.5 0

DOC NN 0 89 2.5 0.5 0.5 1 0.5 0 5.5 0.5
KNN 0 87 2 0 0.5 1 0 0 4 5.5
DT 0 80.5 0.5 2.5 2 0.5 1 0 3 10
Average 0 85.5 1.66 1 1 0.83 0.5 0 4.16 5.33

EXE NN 0 1.5 96 0 0 0.5 0 0 0.5 1.5
KNN 0 3 96 0 0 0 0 1 0 0
DT 0 1.5 95.5 0 0 0 1 0 0 2
Average 0 2 95.83 0 0 0.16 0.33 0.33 0.16 1.16

GIF NN 0 1 3.5 91 0 0 4 0 0 0.5
KNN 0 6 0.5 91 0 0 1 0 0 1.5
DT 0 1 0.5 94.5 0 0.5 2 0 0 1.5
Average 0 2.66 1.5 92.16 0 0.16 2.33 0 0 1.16

HTML NN 6.5 1 0 0 68 0 0 1 15 8.5
KNN 5.5 0.5 0 0 73.5 0 0 1 19.5 0
DT 15 0 0 0 60 0 0 0.5 14 10.5
Average 9 0.5 0 0 67.16 0 0 0.83 16.16 6.33

JPG NN 0 1 0 0.5 0 92.5 3.5 2 0 0
KNN 0 3.5 3 0 0 90 1.5 0.5 0 1
DT 0 1.5 0 7.5 0 84 5.5 0 0 1
Average 0 2 1 2.66 0 88.83 3.5 0.83 0 0.67

MP3 NN 0 0 0 0 0 0 98 0 2 0
KNN 0 0.5 0 0 0 0 99.5 0 0 0
DT 0 0 0 4.5 1 0 93.5 0 1 0
Average 0 0.16 0 1.5 0.33 0 97 0 1 0

PDF NN 0 0 1 0.5 1 0.5 0.5 95.5 0.5 0.5
KNN 0 0 0 0 0 1 0 97 1.5 0.5
DT 0 0.5 0 2.5 1 1 0 94 0 1
Average 0 0.16 0.33 1 0.67 0.83 0.16 95.5 0.67 0.67

TXT NN 0.5 0 0 0 4.5 0 0 0.5 90 3
KNN 1 0.5 0.5 1 3.5 0 0 1.5 90 2
DT 1 2.5 0 0 16.5 0 0 1 79 0
Average 0.83 1 0.16 0.33 8.16 0 0 1 86.33 1.67

XLS NN 0.5 2.5 1 1 0 0 0 1.5 2.5 91
KNN 0 13.5 0.5 0 0.5 0.5 0 2 0.5 82.5
DT 0.5 8 0 0 0.5 0 0 0 2.5 88.5
Average 0.33 8 0.5 0.33 0.33 0.16 0 1.16 1.83 87.33

Table 6: Confusion matrix using 40% of byte patterns obtained by the union operation.
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Figure 2: Classification accuracy using the initial contiguous bytes as the sampled con-
tent.The arrow shows the possible threshold value.
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Figure 3: Classification accuracy using a small number of blocks in random locations as
the sampled content (each block size is 100 bytes). The arrow shows the possible threshold
value. (It is difficult to find an obvious threshold for binary-text files)
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because the first two bytes of binary files such as EXE and JPG contain
magic numbers. For instance, JPG and GIF files begin with ”FF D8 ” and
(GIF89a or GIF87a) respectively. Although the given text files do not have
magic numbers, they often start with keywords. For instance, since HTML
files are web pages created using scripting languages, they usually start with
< html > and <!DOCTY PE. In short, the given file types have certain
patterns for their first two bytes. If the patterns indeed occur frequently and
thus are included in the subset of 40% of byte patterns, it achieves 100%
classification accuracy otherwise the given classifier fails to identify them.
It is also noticed that the classification accuracy improves with the increase
of initial contiguous bytes and becomes reasonably stable beyond a certain
point. The maximum threshold value of the contiguous bytes found for the
given file types is 400KB. This is significantly smaller than the average size
of some of the given file types in the dataset. For instance, for the JPG, PDF
and MP3 files, it is 3, 4 and 15 times smaller than their original size, which
usually is 1200KB, 1500KB and 6000KB respectively.

Figure 3 shows the result of random sampling when small blocks (100
bytes in size) were sampled upto 8000 blocks.

Both schemes (initial contiguous bytes sampling and random sampling)
achieve similar classification accuracy for binary and text files. However,
unlike initial contiguous bytes sampling, random sampling fails to achieve a
consistent accuracy in identifying compound files when the number of blocks
increases. Thus, it is difficult to obtain a threshold value of a sample size
for compound files. We conjecture that since a compound file can contain
many embedded objects, random sampling generates different byte frequency
distributions depending on the objects taken into account. If we compare
the threshold values obtained by both sampling techniques, it is found that
random sampling requires fewer bytes to achieve the optimal and stable ac-
curacy in classifying binary and text files. It also corroborates our intuition
that random sampling can generate a better byte frequency distribution of a
file, because sampling involves the whole file.

In short, we conclude that content sampling is effective for large size
files such as MP3 and JPG where relatively small samples can generate the
representative byte frequency distribution.

5.4. Reduction in processing time

The total time taken to identify the file type includes 1) the time taken
to obtain the byte-frequency distribution of the file, and 2) the time taken
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Figure 4: Reduction in processing time by the content sampling technique, which either
used the initial contiguous 1000 bytes or ten 100-byte blocks in random locations.

by the classification algorithm to detect the file type. Since these two events
are independent,in this section we will discuss them separately.

Figure 4 illustrates how much time could be saved in obtaining byte-
frequency distributions by using the content sampling technique. Although
this result was produced using the 1-gram, using a higher n-gram would
yield similar results because the number of I/O operations would be the
same regardless of the size of n.

Figure 5 illustrates how much time could be saved in the classification
process (with KNN) by using the feature selection technique. Each algorithm
has a different processing time depending on several factors such as whether
it is a lazy or an eager learner, the number of attributes, or the technique used
for comparison from the representative model. In this paper we show KNN
as an example. KNN is a lazy learner in that it builds the representative
model every time it needs to identify a file type. We used the Manhattan
distance to find the distance between the test file and other sample files.
Figure 5 shows that the KNN with the Manhattan distance achieves a 50%
time reduction using 40% of the byte patterns.

We measured the time on a machine with 2.7Ghz Intel CPU and 2GB
RAM running Windows XP.

6. Conclusions and future work

In this paper we presented two techniques for fast file-type identifica-
tion. Firstly we proposed a feature selection technique that reduces the
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Figure 5: Reduction in processing Time by the feature selection technique in computing
the Manhattan distance for the KNN classifier.

computation time of a classification algorithm, assuming that a subset of
high-frequency byte patterns may be sufficient to build the representative
model of a file type. Secondly, instead of using the entire file content, we
proposed a content sampling technique that reduces the time taken to obtain
the byte-frequency distribution of a file.

To evaluate the effectiveness of the proposed techniques, we conducted
experiments using the six most popular classification algorithms to identify
ten file types (HTML, PDF, JPG, EXE, GIF, TXT, DOC, MP3, ASP, and
XLS).

Using the feature selection technique, many classifiers (KNN in particu-
lar) showed an accuracy of about 90% using only 40% of features; this is a
55% reduction in computation time. Therefore we conclude that the feature
selection approach is highly effective. This technique saves substantial time.
For example, KNN using the Manhattan distance can save about 50% of time
by using 40% of the byte patterns.

The content sampling technique showed that a small block of a file is
sufficient to generate the representative byte frequency distributions of the
given file types. For instance, MP3 files have an average size of 5MB (in
our dataset), and the empirical results showed that a 400KB sample of an
MP3 file is enough to generate its byte frequency distribution (using initial
contiguous bytes sampling) which is a 15-fold size reduction.
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The proposed approaches showed promising results even with 1-gram fea-
tures. We conjecture that we can achieve higher accuracy by increasing the
size of the n-gram in order to obtain better features for the classifier. More-
over, substantial time can be saved by using a higher n-gram.
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