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Programmable logic controllers (PLCs) automate the control and monitoring of physical industrial and 
infrastructure processes such as power generation, gas pipelines, and water management. Due to the 
convergence of networking infrastructure, PLCs can be exposed to cyberattacks over the network with 
potentially catastrophic consequences. This article introduces the basic mechanisms by which various 
attacks can be detected, analyzed, and ultimately remedied.

E arly industrial control system (ICS) environments 
were isolated deployments, not connected to other 

networks (such as the Internet or the corporate intranet), 
and their cybersecurity wasn’t a concern. However, over 
the past two decades, these systems have become tightly 
integrated using commercial-off-the-shelf software and 
hardware, which brings substantial economic advan-
tages. The unintended consequence of this network 
convergence is that IT vulnerabilities can ultimately pro-
vide attackers with direct access to ICS networks that 
are open to manipulation and attack. If attackers com-
promise a programmable logic controller (PLC), they 
can disrupt the normal control of a physical process 
and cause a catastrophe, such as environmental damage 
and loss of life. The recent cyberattack on the Ukrainian 
power grid shows such attacks are possible.1

Digital forensic investigation after a security breach 
or catastrophic event is crucial to answer questions 
about a cyberattack such as2

■■ What components were affected in the ICS 
environment?

■■ How was the attack executed? Who were the perpe-
trators, and what was their location?

■■ Were the attackers internal or external, and what was 
their motivation?

■■ Is the attack still active, and can it be repeated?

In this article, we focus on several common attack 
scenarios and discuss artifacts that a forensic investiga-
tion of an affected PLC can recover to help diagnose the 
attack. We summarize the available tools and methods 
for PLCs, both at the network and device level, that 
allow the extraction and analysis of the forensic artifacts.

PLC Primer
To understand cyberattacks on PLCs, it’s essential to 
understand the PLC’s role in an ICS environment, its 
interaction with other ICS components, and its hard-
ware architecture at the device level.

PLC in an ICS Environment
Figure 1 presents an overview of a typical ICS environ-
ment. It consists of two major sections: control center 
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and field sites. The control center runs ICS services such 
as the human–machine interface (HMI), engineering 
workstation, historian (a database application), and 
control server. The field site has sensors, actuators, and 
PLCs that are installed locally to monitor and control 
the physical processes. For instance, in a gas pipeline, a 
PLC monitors and controls the gas pressure. It obtains 
the current pressure of the compressed gas in the pipe. 
If the pressure exceeds a certain threshold, it opens a 
solenoid valve (an actuator) to release some gas, which 
reduces the gas pressure in the pipe.

An engineering workstation is used to configure 
and program a PLC. It has PLC vendor-specific pro-
gramming software to write control logic that defines 
how the PLC should control a physical process. The 
logic is written in one of the languages defined in IEC 
61131-3, such as ladder logic or instruction list. In the 
gas pipeline example, a PLC is programmed to main-
tain pressure in the pipeline between 40 and 50 PSI. 
Based on readings from the pressure sensor, if the gas 
pressure is more than 50 PSI, the PLC opens the sole-
noid valve to release some gas until the pressure is 
reduced to 40 PSI.

The control server or master terminal unit (MTU) 
and PLCs communicate with one another using ICS 
protocols, such as Modbus, PROFINET, and EtherNet/ 
IP, and exchange data about the current status of a physi-
cal process, such as gas pressure and the solenoid valve’s 
on/off state. When the data arrives at the control center, 
the HMI interprets and presents the data in a graphical 
user interface to a human operator. The HMI enables 
the operator to monitor the process remotely and make 
operational decisions to maintain safety and efficiency. 
For instance, the operator might choose to turn on the 
solenoid valve to release some gas even when the pres-
sure is less than the threshold value. The historian stores 
the PLC data, which is used for viewing trends in graph-
ical form for analysis.

PLC Architecture
Figure 2 depicts a typical architecture of a PLC that 
includes input and output modules, power supply, and 
memory such as RAM and EEPROM. The nonvolatile 
memory (EEPROM) stores firmware or an OS and 
control logic program (also called ladder logic). Input 
and output devices such as sensors, switches, relays, 
and valves are connected with the input and output 
modules. The PLC is connected with a physical pro-
cess; input devices provide the current state of the 
process to the PLC, which the PLC processes through 
its control logic, and manipulate the physical process 
accordingly via output devices. In a ladder logic pro-
gram, the input and output devices are referred to as 
contacts and coils.

Cyberattacks on PLC
PLCs’ primary design requirements are safety, real-time 
response to changes in the monitored processes, and 
the ability to work in environments. They were never 
designed for resilience against network attacks of any 
kind. In a typical ICS scenario, the PLCs are connected 
to the control center and the center is connected to the 
corporate network, which is usually connected to the 
Internet through a demilitarized zone (DMZ). This 
connectivity chain exposes the PLCs to adversaries 
who can remotely launch pivot attacks to reach PLCs 
and manipulate their normal functions.

An ICS cyberattack involves communication pro-
tocols such as Modbus and DNP3, and exploits either 
the protocol specification or the vendor-specific 

Figure 1. Overview of an industrial control system (ICS) 
environment. It consists of two major sections: control 
center and field sites. The control center runs ICS services 
such as the human–machine interface (HMI), engineering 
workstation, historian, and control server. The field site has 
sensors, actuators, and programmable logic controllers 
(PLCs) that are installed locally to monitor and control the 
physical processes.
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implementation of the protocol. In a typical scenario, 
the attacker penetrates an ICS network and interrupts, 
intercepts, modifies, and/or fabricates messages to 
manipulate PLCs and the network’s ICS services.3 For 
instance, the Idaho National Laboratory (INL) dem-
onstrated a remote cyberattack on field devices (con-
trollers) at the 2004 KEMA Control Systems Cyber 
Security Conference.4 The attack was initiated at the 
Sandia National Laboratory and carried out remotely 
at INL. It exploited a newly discovered buffer overflow 
vulnerability in the Apache software at the control cen-
ter, took control of field devices, and flipped the current 
state of a breaker.

The forensic artifacts of such attacks can exist at both 
network and device levels.

Network-Level Analysis
The common categories of PLC cyberattacks at the net-
work level include reconnaissance, man-in-the-middle 
(MITM), and denial-of-service (DoS) attacks.5–7

Reconnaissance. Reconnaissance is the preliminary 
step of information gathering that precedes the actual 
attack. It involves the identification of supporting func-
tion codes, assigned PLC addresses, make, model, firm-
ware, and so on.7 It can be achieved by either passively 
eavesdropping or actively querying the PLC. Passive 
reconnaissance is hard to investigate because it rarely 
leaves any traces on the network, whereas active query-
ing does.

To identify assigned PLC addresses, attackers can 
scan the whole address range for the PLCs by sending 
them the request messages with a commonly supported 
function code. If a response is received for an address, 
it exposes the address used by a PLC. This approach is 
quite noisy as it leaves a significant number of messages 
containing unknown PLC addresses in the network 
traffic log. For example, a full address scan using the 
Modbus protocol requires 247 messages—the number 
of allowable addresses.

Once attackers know a PLC’s address, they can per-
form a similar attack to explore the supporting function 
codes in the PLC. Attackers send messages with all possi-
ble function codes to the PLC and, based on the response, 
can determine the valid function codes. For instance, 
a Modbus message has a 1-byte field for function code. 
If a PLC doesn’t support a function code, it sends an 
exception response message with exception code 0x01, 
indicating an illegal function code. Just like the previous 
attack, this one also leaves a lot of forensic artifacts in the 
network traffic in the form of exception response mes-
sages. To reduce the network footprint, attackers might 
attempt to explore a small number of function codes that 
are essential to launch an attack. For example, code 0x05 
in Modbus is used to alter a coil value, which typically 
directly controls a physical process.

If an attack involves exploiting a specific PLC vulner-
ability, the reconnaissance will aim to gather the PLCs’ 
specific make, model, and software versions to identify a 
vulnerable one. The protocols might support functions 
for extracting device-specific information. In Modbus, 
function code 0x11 reveals the device’s current run 
status and additional device-specific information. The 
presence of such traffic in the network log is a useful 
indicator of reconnaissance.

Man in the middle. In an MITM attack, an attacker is 
positioned as a mediator of all communication between 
ICS services in a control center and PLCs in the field 
sites. In other words, all the traffic passes through the 
attacker’s machine, allowing him or her to eavesdrop 
and to manipulate message content at will. For instance, 
in a gas pipeline, the attacker could fabricate a mes-
sage that instructs the PLC to open the solenoid valve. 
When the PLC sends the current state of the valve to 
the control center, the attacker could modify the data 
in the message to represent the state of the valve as 
closed. When the HMI receives the manipulated data, it 
shows the human operator that the valve is in the closed 
position, which is the normal state of the valve. Thus, 
an MITM attack provides a measure of stealth that can 
keep the victim in the dark indefinitely.

One approach to place the attacker in the MITM 
position is Address Resolution Protocol (ARP) spoof-
ing. The attacker modifies the ARP tables (used for  
IP/MAC resolution) of the victim’s PLC and the com-
puter running the HMI to associate their IP addresses 
with the attacker’s MAC address. After modification, 
both the PLC and the computer start using the attacker’s 
MAC address in the messages exchanged with each other, 
redirecting the messages to the attacker’s machine.5

Assuming that a forensic investigator has the correct 
IP/MAC association, these types of attacks are identifi-
able by analyzing a network traffic log for inconsistent 

Figure 2. A typical PLC architecture. It includes input and output modules, 
power supply, and memory such as RAM and EEPROM (nonvolatile memory).
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IP/MAC associations. Another source of data is the 
PLC’s RAM content and the computer from which the 
ARP tables can be extracted.

Denial of service. A typical PLC informs the control cen-
ter periodically about the current state of the physical 
process being monitored and controlled. A DoS attack 
on a PLC is designed to interfere with its normal pro-
cessing by denying it the ability to either communicate 
with other ICS components or execute control logic 
programs. A typical DoS attack on communication 
involves packet flooding, which exhausts the bandwidth 
of the communication link between the PLC and the 
control center.5

Device-Level Analysis
The common categories of attacks on the PLC device 
include DoS, command injection, and memory 
corruption.7–10

Denial of service. A DoS attack on a PLC device either 
targets a vulnerability in a PLC component, such as 
firmware, or exploits a normal function in a malicious 
manner. For instance, a malformed packet, if not prop-
erly handled by a PLC, could cause the PLC to crash, 
preventing it from executing the control logic.

Another attack involves altering a PLC operational 
mode from RUN to PROGRAM, which stops the PLC 
execution of the logic program. The PLC normally 
operates in RUN mode; PROGRAM mode is used to 
transfer new ladder logic to the PLC. The mode switch 
is needed to facilitate the normal update of the control 
logic, but it could also be misused to attack the system. 
Detection of such malicious activity is readily possible 
by examining the patterns of communication sent to the 
PLC; the investigator needs an appropriate tool to auto-
mate this process.

Command injection. Command injection attacks are 
performed by injecting unwanted code into a computer 
system, thereby gaining unauthorized control over the 
system. These attacks are normally executed in PLCs 
by overwriting the ladder logic program. Thomas H. 
Morris and Wei Gao identify three types of command 
injection attacks: malicious state injection, malicious 
parameter injection, and malicious function code 
injection.7

The malicious state injection attack sends a mali-
cious command to a PLC to transition the state of a 
physical process to an abnormal state. For instance, 
changing the coil state from 0x0 to 0x1 alters the state of 
the corresponding actuator.

The malicious parameter injection attack changes a 
device set point. For instance, the threshold setting of 

the gas pressure is changed from 50 to 300 psi. The pipe 
might be damaged if it can’t bear 300 psi.

The malicious function code injection attack 
changes the configuration of the PLC to an unexpected 
state such as restart of communication.

Memory/firmware corruption. For more than a decade, 
memory corruption attacks such as buffer overflow 
have been common in ICS networks and PLCs.8

Luis Garcia and his colleagues presented Harvey, a 
rootkit that infects a PLC’s firmware to control all inputs 
and outputs.9 Harvey resides at the firmware level, inter-
cepts the firmware’s control and information flow, and 
modifies the input and output data arbitrarily.

PLC Forensic Challenges
Several challenges must be overcome to investigate a 
suspect PLC efficiently and effectively. These include 
the lack of network forensic tools, the PLC’s resource 
constraints and potentially remote location, and the 
proprietary nature of most hardware and software used 
to program and maintain it.

Local Access to a PLC
A PLC can be located at a remote region that’s effec-
tively unreachable for a forensic investigator. If a PLC is 
compromised and local access to a PLC is difficult, the 
investigation tools and techniques that require physical 
access to the PLC won’t work.

Resource-Constrained PLC Device
PLCs are designed to run continuously for control and 
monitoring and are resource constrained with limited 
computing power and memory storage. Thus, the use 
of a forensic tool must not interfere with a PLC’s avail-
ability, which is challenging for an investigator who 
wants to run such forensic tools in an unfamiliar ICS 
environment.

PLC Data Acquisition
A PLC is connected to I/O devices such as sensors 
and actuators. The amount of data generated by these 
devices can be quite significant. For instance, in power 
grid stations, sensors can carry out measurements up to 
4,000 times per second. It’s challenging for an investiga-
tor to capture and analyze such a large amount of data.

PLC components include RAM and EEPROM, 
which store the firmware. To identify any malicious 
modifications in the firmware, its acquisition is inevita-
ble. The current techniques require local access to a PLC 
and utilize JTAG ( Joint Test Action Group)/UART 
(universal asynchronous receiver–transmitter) type 
interfaces for EEPROM/RAM data acquisition. RAM 
content contains the PLC’s current state and artifacts 
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of forensic relevance including the current ladder logic 
program, ARP table, and so on. Unfortunately, no foren-
sic techniques are available to remotely acquire the firm-
ware and RAM contents over the network.

Proprietary Closed Source Firmware
PLCs generally run closed source, vendor-specific, 
proprietary firmware, making it difficult to develop 
generalized forensic solutions for PLCs or to modify 
the firmware to add functionalities for PLC forensic 
readiness.

Inadequate ICS Network Forensic Tools
Remote attacks on PLCs involve the ICS network. A 
PLC might support different ICS protocols depending 
on the physical process. For instance, DNP3 is popu-
lar in the power sector. Unfortunately, network foren-
sic tools aren’t available to support a large number of 
ICS protocols, analyze network traffic logs to identify 
different types of cyberattacks especially on PLCs, and 
extract forensic artifacts. For instance, if an adversary 
transfers a ladder logic program in a PLC, a network 
forensic tool is required to extract and analyze the pro-
gram from a network traffic log.

Insufficient Logging
Logging is critical for the re-creation and correlation of 
events. Unfortunately, PLCs have limited or no logging 
capabilities. The logging is geared toward process dis-
turbance, not security breaches, and thus isn’t useful for 
forensic investigation. The logs exist for a limited time 
and are overwritten frequently because PLC memory 
is small. In the control center, the historian stores the 
values of process and control variables received from a 
PLC. However, historian data is limited and depends 
mostly on MTU configurations. The historian doesn’t 
store the current state of a PLC’s ladder logic and 
firmware.

PLC Forensic Tools and Methodologies
PLC forensics is mostly an unexplored territory, cur-
rently limited to ICS network protocols.

Network Level
We recently developed a network forensic tool to analyze 
the network traffic log of an ICS protocol, PCCC (Pro-
grammable Controller Communication Commands).11 
The prototype tool can extract the low-level representa-
tion of a control ladder logic program, PLC system con-
figurations such as Simple Mail-Transfer Protocol (SMTP)  
client, and the state of input and output devices. The proto-
col contains file type and file number fields for the function 
codes 0xA2 and 0xAA for reading and writing to a PLC, 
respectively. Interestingly, network traffic analysis reveals 
several unknown file types, which we classified based on 
their content. Table 1 presents the file types along with 
the description of their content. SMTP client information 
such as username, password, and to/from email addresses 
is transferred in ASCII characters over the network.

Ken Yau and Kam-Pui Chow proposed a Control 
Program Logic Change Detector, which derives a set of 
detection rules using a ladder logic program.12 The rules 
are then utilized to analyze network traffic of the PLC 
running the ladder logic program and identify any unex-
pected (potentially anomalous) control variable values.

Tim Kilpatrick and his colleagues presented a net-
work forensics architecture in which network packets at 
certain strategic locations were captured and followed 
by reconstructing network events from the captured 
packets. The architecture has two major components—
agents and the data warehouse.13 The agents capture 
packets from network traffic from specific locations in an 
ICS network. The architecture also has a synopsis engine 
to create a summary for each packet. The packet is then 
passed to the data warehouse. The data warehouse digi-
tally signs the summary of each packet and forwards it 
to appropriate agents. The digitally verified summary is 
later used as evidence for network forensic capabilities.

Craig Valli proposed using the Snort intrusion detec-
tion system (IDS) for the forensic investigation of Mod-
bus and DNP3 vulnerabilities and attacks.14 He created 
a step-by-step procedure for forensic analysis including 
creating environment scanning for anomaly detection 
as a first step. Next, production and replay for each vul-
nerability is performed, then each vulnerability is ana-
lyzed, resulting in the creation of an IDS rule set. Finally, 
testing of each rule set is performed.

Amit Kleinmann and Avishai Wool analyzed the net-
work traffic of Siemens S7 PLC and observed that the 
traffic is highly periodic.15 Based on the observation, 
they proposed an IDS that utilizes a deterministic finite 
automaton to model the network traffic accurately. The 
IDS achieves 99.26 percent accuracy.

Table 1. Classification of unknown file types based on content.

File type Classification

0x4C Simple Mail-Transfer Protocol configuration

0x49 Ethernet configuration

0x22 Ladder logic—control logic program

0x4D DNP3 configuration

0x95 Routing information

0x47 DF1 (asynchronous byte-oriented protocol) configuration
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Device Level
A forensic investigation requires the acquisition and 
analysis of data from suspicious PLCs.

Data acquisition. For live data acquisition, both vola-
tile and nonvolatile data should be acquired. Although 
ICS protocols have function codes to read specific data 
types, such as input, output, counter, and timer, from a 
live PLC, these function codes can’t be used to acquire 
the entire RAM and EEPROM content.

We analyzed two different PLCs (referred to as PLC 
A and PLC B) from a major vendor regarding their 
forensic capability. (The make and model of the PLCs 
are anonymized to protect proprietary information.) 
The main focus is on evaluating the possibility to eas-
ily acquire RAM and nonvolatile RAM (NVRAM) con-
tent, then dump and investigate the file system.

Table 2 summarizes the evaluation results. A positive 
smiley means it’s easy to extract the type of information; 
that is, the device supports the forensic analyst by pro-
viding extraction functionality.

A challenge in analyzing PLCs is extracting memory 
content. Whereas PLC B at least dumps the dynamic 
RAM (DRAM) to a flash card if it crashes (mainly for 
debugging purposes), PLC A doesn’t offer any support. 
However, neither device supported a DRAM dump 
while in operation.

There’s little support for extracting PLC A’s NVRAM 
(PLC B had none). Apparently, the only possibility is 
to extract parts of the NVRAM through the PLC’s 
real-time OS.

PLC A contains a compact flash card that stores the 
entire file system. The card can be removed by opening the 
device, and also contains the boot image in the boot sector 
of the card and the entire configuration information. PLC 
B’s built-in flash storage contains only the firmware; the 
actual applications running on the controller exist only 
in RAM. In the event of a power failure, a backup battery 
keeps the RAM contents alive for a certain period of time. 
The compact flash slot can be used to upgrade a control-
ler’s firmware or load applications onto the controller; or if 
a compact flash card is inserted into the controller when it 
crashes, a dump of the RAM of the controller will be writ-
ten to the compact flash card.

The difficulty in obtaining the PLC databases is con-
nected to the difficulty of acquiring the flash storage. 
While PLC A exposes the complete device database, 
PLC B stores all information in its RAM, which, as 
pointed out, is very difficult to obtain.

Log files can be easily extracted for both PLCs, and 
network statistics can also be extracted using the PLC 
configuration tool.

In summary, both investigated devices have a differ-
ent design and architecture and use distinct tools for 

configuration and management. This results in differ-
ences in the capabilities to extract specific information, 
data artifacts, and memory content. In general, we rec-
ommend that device manufacturers consider forensic 
capabilities early in their device life cycle.

Data Analysis
Saman A. Zonouz and his colleagues proposed combin-
ing symbolic execution and model checking to analyze 
the code bounds of malicious injected PLC code.10 Sym-
bolic execution of PLC program code analyzes the causal 
relationship between different inputs and the resulting 
execution of program code. Model checking validates 
the PLC code of the intended control system against the 
specification of a model ICS. This combined approach 
can be employed for forensic purposes to identify which 
areas have caused PLC malicious code injection trials, 
and which part of the code was the likely cause for such 
execution. Thus, model checking can indicate that aber-
rant behavior has occurred, whereas symbolic execution 
can point to the root cause of the execution.

Lucille McMinn and Jonathan Butts proposed a 
firmware verification tool for forensically analyzing 
the trials of altering firmware code to gain access over 
the ICS network by any unauthorized person. This is 
done by either comparing the firmware under test with 
a good firmware version or analyzing the data captured 
from the PLC and identifying whether the underlying 
PLC’s firmware is modified.16

I ndustrial control systems support critical infrastruc-
ture services and have life cycles that span decades. 

This introduces challenges that could not have been 
foreseen and need to be addressed by other means. 
PLCs, which execute an ICS’s control logic, are par-
ticularly vulnerable to network attacks; therefore, 

Table 2. Evaluation of two programmable logic controllers’ 
(PLCs’) forensic capabilities.

Artifact PLC A PLC B

Dynamic RAM  

Nonvolatile RAM  –

Flash storage  

Databases  

Log files  

Network statistics  
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developing the means to quickly diagnose and analyze 
such attacks is critical.

Unlike the forensic analysis of a conventional IT 
system, which has seen more than three decades of 
active development, PLC forensics is still at an early 
stage of development. This is partially due to the spe-
cialized nature of ICS and the prevalence of proprie-
tary and poorly documented protocols. Nonetheless, 
over the past decade, researchers and practitioners 
have adapted several core methods and tools from IT 
forensics and security monitoring to the ICS world. 
In particular, reverse engineering has resulted in the 
public documentation of several ICS protocols, net-
work analysis tools have been adapted to parse and 
interpret such protocols, and an emerging body of 
work is targeting the direct analysis of PLC memory 
content. 
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