
18	 November/December 2017	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/17/$33.00 © 2017 IEEE

DIGITAL FORENSICS, PART 1

Programmable Logic Controller Forensics

Irfan Ahmed | University of New Orleans
Sebastian Obermeier | ABB
Sneha Sudhakaran and Vassil Roussev | University of New Orleans

Programmable logic controllers (PLCs) automate the control and monitoring of physical industrial and
infrastructure processes such as power generation, gas pipelines, and water management. Due to the
convergence of networking infrastructure, PLCs can be exposed to cyberattacks over the network with
potentially catastrophic consequences. This article introduces the basic mechanisms by which various
attacks can be detected, analyzed, and ultimately remedied.

E arly industrial control system (ICS) environments
were isolated deployments, not connected to other

networks (such as the Internet or the corporate intranet),
and their cybersecurity wasn’t a concern. However, over
the past two decades, these systems have become tightly
integrated using commercial-off-the-shelf software and
hardware, which brings substantial economic advan-
tages. The unintended consequence of this network
convergence is that IT vulnerabilities can ultimately pro-
vide attackers with direct access to ICS networks that
are open to manipulation and attack. If attackers com-
promise a programmable logic controller (PLC), they
can disrupt the normal control of a physical process
and cause a catastrophe, such as environmental damage
and loss of life. The recent cyberattack on the Ukrainian
power grid shows such attacks are possible.1

Digital forensic investigation after a security breach
or catastrophic event is crucial to answer questions
about a cyberattack such as2

■■ What components were affected in the ICS
environment?

■■ How was the attack executed? Who were the perpe-
trators, and what was their location?

■■ Were the attackers internal or external, and what was
their motivation?

■■ Is the attack still active, and can it be repeated?

In this article, we focus on several common attack
scenarios and discuss artifacts that a forensic investiga-
tion of an affected PLC can recover to help diagnose the
attack. We summarize the available tools and methods
for PLCs, both at the network and device level, that
allow the extraction and analysis of the forensic artifacts.

PLC Primer
To understand cyberattacks on PLCs, it’s essential to
understand the PLC’s role in an ICS environment, its
interaction with other ICS components, and its hard-
ware architecture at the device level.

PLC in an ICS Environment
Figure 1 presents an overview of a typical ICS environ-
ment. It consists of two major sections: control center

www.computer.org/security� 19

and field sites. The control center runs ICS services such
as the human–machine interface (HMI), engineering
workstation, historian (a database application), and
control server. The field site has sensors, actuators, and
PLCs that are installed locally to monitor and control
the physical processes. For instance, in a gas pipeline, a
PLC monitors and controls the gas pressure. It obtains
the current pressure of the compressed gas in the pipe.
If the pressure exceeds a certain threshold, it opens a
solenoid valve (an actuator) to release some gas, which
reduces the gas pressure in the pipe.

An engineering workstation is used to configure
and program a PLC. It has PLC vendor-specific pro-
gramming software to write control logic that defines
how the PLC should control a physical process. The
logic is written in one of the languages defined in IEC
61131-3, such as ladder logic or instruction list. In the
gas pipeline example, a PLC is programmed to main-
tain pressure in the pipeline between 40 and 50 PSI.
Based on readings from the pressure sensor, if the gas
pressure is more than 50 PSI, the PLC opens the sole-
noid valve to release some gas until the pressure is
reduced to 40 PSI.

The control server or master terminal unit (MTU)
and PLCs communicate with one another using ICS
protocols, such as Modbus, PROFINET, and EtherNet/
IP, and exchange data about the current status of a physi-
cal process, such as gas pressure and the solenoid valve’s
on/off state. When the data arrives at the control center,
the HMI interprets and presents the data in a graphical
user interface to a human operator. The HMI enables
the operator to monitor the process remotely and make
operational decisions to maintain safety and efficiency.
For instance, the operator might choose to turn on the
solenoid valve to release some gas even when the pres-
sure is less than the threshold value. The historian stores
the PLC data, which is used for viewing trends in graph-
ical form for analysis.

PLC Architecture
Figure 2 depicts a typical architecture of a PLC that
includes input and output modules, power supply, and
memory such as RAM and EEPROM. The nonvolatile
memory (EEPROM) stores firmware or an OS and
control logic program (also called ladder logic). Input
and output devices such as sensors, switches, relays,
and valves are connected with the input and output
modules. The PLC is connected with a physical pro-
cess; input devices provide the current state of the
process to the PLC, which the PLC processes through
its control logic, and manipulate the physical process
accordingly via output devices. In a ladder logic pro-
gram, the input and output devices are referred to as
contacts and coils.

Cyberattacks on PLC
PLCs’ primary design requirements are safety, real-time
response to changes in the monitored processes, and
the ability to work in environments. They were never
designed for resilience against network attacks of any
kind. In a typical ICS scenario, the PLCs are connected
to the control center and the center is connected to the
corporate network, which is usually connected to the
Internet through a demilitarized zone (DMZ). This
connectivity chain exposes the PLCs to adversaries
who can remotely launch pivot attacks to reach PLCs
and manipulate their normal functions.

An ICS cyberattack involves communication pro-
tocols such as Modbus and DNP3, and exploits either
the protocol specification or the vendor-specific

Figure 1. Overview of an industrial control system (ICS)
environment. It consists of two major sections: control
center and field sites. The control center runs ICS services
such as the human–machine interface (HMI), engineering
workstation, historian, and control server. The field site has
sensors, actuators, and programmable logic controllers
(PLCs) that are installed locally to monitor and control the
physical processes.

Corporate network

Corporate LAN

ICS LAN

Wide area network

External communication
infrastructure

Field site 1

...
Modem

PLC

I/O I/O

Physical process (gas pipeline, power grid, etc.)

WAN card PLC

Field site N

Control center

HMI
Engineering
workstation

Control server
(MTU)

Historian

Internet

20	 IEEE Security & Privacy� November/December 2017

DIGITAL FORENSICS, PART 1

implementation of the protocol. In a typical scenario,
the attacker penetrates an ICS network and interrupts,
intercepts, modifies, and/or fabricates messages to
manipulate PLCs and the network’s ICS services.3 For
instance, the Idaho National Laboratory (INL) dem-
onstrated a remote cyberattack on field devices (con-
trollers) at the 2004 KEMA Control Systems Cyber
Security Conference.4 The attack was initiated at the
Sandia National Laboratory and carried out remotely
at INL. It exploited a newly discovered buffer overflow
vulnerability in the Apache software at the control cen-
ter, took control of field devices, and flipped the current
state of a breaker.

The forensic artifacts of such attacks can exist at both
network and device levels.

Network-Level Analysis
The common categories of PLC cyberattacks at the net-
work level include reconnaissance, man-in-the-middle
(MITM), and denial-of-service (DoS) attacks.5–7

Reconnaissance. Reconnaissance is the preliminary
step of information gathering that precedes the actual
attack. It involves the identification of supporting func-
tion codes, assigned PLC addresses, make, model, firm-
ware, and so on.7 It can be achieved by either passively
eavesdropping or actively querying the PLC. Passive
reconnaissance is hard to investigate because it rarely
leaves any traces on the network, whereas active query-
ing does.

To identify assigned PLC addresses, attackers can
scan the whole address range for the PLCs by sending
them the request messages with a commonly supported
function code. If a response is received for an address,
it exposes the address used by a PLC. This approach is
quite noisy as it leaves a significant number of messages
containing unknown PLC addresses in the network
traffic log. For example, a full address scan using the
Modbus protocol requires 247 messages—the number
of allowable addresses.

Once attackers know a PLC’s address, they can per-
form a similar attack to explore the supporting function
codes in the PLC. Attackers send messages with all possi-
ble function codes to the PLC and, based on the response,
can determine the valid function codes. For instance,
a Modbus message has a 1-byte field for function code.
If a PLC doesn’t support a function code, it sends an
exception response message with exception code 0x01,
indicating an illegal function code. Just like the previous
attack, this one also leaves a lot of forensic artifacts in the
network traffic in the form of exception response mes-
sages. To reduce the network footprint, attackers might
attempt to explore a small number of function codes that
are essential to launch an attack. For example, code 0x05
in Modbus is used to alter a coil value, which typically
directly controls a physical process.

If an attack involves exploiting a specific PLC vulner-
ability, the reconnaissance will aim to gather the PLCs’
specific make, model, and software versions to identify a
vulnerable one. The protocols might support functions
for extracting device-specific information. In Modbus,
function code 0x11 reveals the device’s current run
status and additional device-specific information. The
presence of such traffic in the network log is a useful
indicator of reconnaissance.

Man in the middle. In an MITM attack, an attacker is
positioned as a mediator of all communication between
ICS services in a control center and PLCs in the field
sites. In other words, all the traffic passes through the
attacker’s machine, allowing him or her to eavesdrop
and to manipulate message content at will. For instance,
in a gas pipeline, the attacker could fabricate a mes-
sage that instructs the PLC to open the solenoid valve.
When the PLC sends the current state of the valve to
the control center, the attacker could modify the data
in the message to represent the state of the valve as
closed. When the HMI receives the manipulated data, it
shows the human operator that the valve is in the closed
position, which is the normal state of the valve. Thus,
an MITM attack provides a measure of stealth that can
keep the victim in the dark indefinitely.

One approach to place the attacker in the MITM
position is Address Resolution Protocol (ARP) spoof-
ing. The attacker modifies the ARP tables (used for
IP/MAC resolution) of the victim’s PLC and the com-
puter running the HMI to associate their IP addresses
with the attacker’s MAC address. After modification,
both the PLC and the computer start using the attacker’s
MAC address in the messages exchanged with each other,
redirecting the messages to the attacker’s machine.5

Assuming that a forensic investigator has the correct
IP/MAC association, these types of attacks are identifi-
able by analyzing a network traffic log for inconsistent

Figure 2. A typical PLC architecture. It includes input and output modules,
power supply, and memory such as RAM and EEPROM (nonvolatile memory).

Power supply

Control (ladder) logic program

Firmware/OS

Hardware

Physical process (gas pipeline, etc.)

Input devices Output devices

Input
module

Output
module

Sensors

Switches

EEPROM

I/O I/O

Lights

Relays

Motor starter

Solenoid valve

RAM CPU

Push buttons

www.computer.org/security� 21

IP/MAC associations. Another source of data is the
PLC’s RAM content and the computer from which the
ARP tables can be extracted.

Denial of service. A typical PLC informs the control cen-
ter periodically about the current state of the physical
process being monitored and controlled. A DoS attack
on a PLC is designed to interfere with its normal pro-
cessing by denying it the ability to either communicate
with other ICS components or execute control logic
programs. A typical DoS attack on communication
involves packet flooding, which exhausts the bandwidth
of the communication link between the PLC and the
control center.5

Device-Level Analysis
The common categories of attacks on the PLC device
include DoS, command injection, and memory
corruption.7–10

Denial of service. A DoS attack on a PLC device either
targets a vulnerability in a PLC component, such as
firmware, or exploits a normal function in a malicious
manner. For instance, a malformed packet, if not prop-
erly handled by a PLC, could cause the PLC to crash,
preventing it from executing the control logic.

Another attack involves altering a PLC operational
mode from RUN to PROGRAM, which stops the PLC
execution of the logic program. The PLC normally
operates in RUN mode; PROGRAM mode is used to
transfer new ladder logic to the PLC. The mode switch
is needed to facilitate the normal update of the control
logic, but it could also be misused to attack the system.
Detection of such malicious activity is readily possible
by examining the patterns of communication sent to the
PLC; the investigator needs an appropriate tool to auto-
mate this process.

Command injection. Command injection attacks are
performed by injecting unwanted code into a computer
system, thereby gaining unauthorized control over the
system. These attacks are normally executed in PLCs
by overwriting the ladder logic program. Thomas H.
Morris and Wei Gao identify three types of command
injection attacks: malicious state injection, malicious
parameter injection, and malicious function code
injection.7

The malicious state injection attack sends a mali-
cious command to a PLC to transition the state of a
physical process to an abnormal state. For instance,
changing the coil state from 0x0 to 0x1 alters the state of
the corresponding actuator.

The malicious parameter injection attack changes a
device set point. For instance, the threshold setting of

the gas pressure is changed from 50 to 300 psi. The pipe
might be damaged if it can’t bear 300 psi.

The malicious function code injection attack
changes the configuration of the PLC to an unexpected
state such as restart of communication.

Memory/firmware corruption. For more than a decade,
memory corruption attacks such as buffer overflow
have been common in ICS networks and PLCs.8

Luis Garcia and his colleagues presented Harvey, a
rootkit that infects a PLC’s firmware to control all inputs
and outputs.9 Harvey resides at the firmware level, inter-
cepts the firmware’s control and information flow, and
modifies the input and output data arbitrarily.

PLC Forensic Challenges
Several challenges must be overcome to investigate a
suspect PLC efficiently and effectively. These include
the lack of network forensic tools, the PLC’s resource
constraints and potentially remote location, and the
proprietary nature of most hardware and software used
to program and maintain it.

Local Access to a PLC
A PLC can be located at a remote region that’s effec-
tively unreachable for a forensic investigator. If a PLC is
compromised and local access to a PLC is difficult, the
investigation tools and techniques that require physical
access to the PLC won’t work.

Resource-Constrained PLC Device
PLCs are designed to run continuously for control and
monitoring and are resource constrained with limited
computing power and memory storage. Thus, the use
of a forensic tool must not interfere with a PLC’s avail-
ability, which is challenging for an investigator who
wants to run such forensic tools in an unfamiliar ICS
environment.

PLC Data Acquisition
A PLC is connected to I/O devices such as sensors
and actuators. The amount of data generated by these
devices can be quite significant. For instance, in power
grid stations, sensors can carry out measurements up to
4,000 times per second. It’s challenging for an investiga-
tor to capture and analyze such a large amount of data.

PLC components include RAM and EEPROM,
which store the firmware. To identify any malicious
modifications in the firmware, its acquisition is inevita-
ble. The current techniques require local access to a PLC
and utilize JTAG (Joint Test Action Group)/UART
(universal asynchronous receiver–transmitter) type
interfaces for EEPROM/RAM data acquisition. RAM
content contains the PLC’s current state and artifacts

22	 IEEE Security & Privacy� November/December 2017

DIGITAL FORENSICS, PART 1

of forensic relevance including the current ladder logic
program, ARP table, and so on. Unfortunately, no foren-
sic techniques are available to remotely acquire the firm-
ware and RAM contents over the network.

Proprietary Closed Source Firmware
PLCs generally run closed source, vendor-specific,
proprietary firmware, making it difficult to develop
generalized forensic solutions for PLCs or to modify
the firmware to add functionalities for PLC forensic
readiness.

Inadequate ICS Network Forensic Tools
Remote attacks on PLCs involve the ICS network. A
PLC might support different ICS protocols depending
on the physical process. For instance, DNP3 is popu-
lar in the power sector. Unfortunately, network foren-
sic tools aren’t available to support a large number of
ICS protocols, analyze network traffic logs to identify
different types of cyberattacks especially on PLCs, and
extract forensic artifacts. For instance, if an adversary
transfers a ladder logic program in a PLC, a network
forensic tool is required to extract and analyze the pro-
gram from a network traffic log.

Insufficient Logging
Logging is critical for the re-creation and correlation of
events. Unfortunately, PLCs have limited or no logging
capabilities. The logging is geared toward process dis-
turbance, not security breaches, and thus isn’t useful for
forensic investigation. The logs exist for a limited time
and are overwritten frequently because PLC memory
is small. In the control center, the historian stores the
values of process and control variables received from a
PLC. However, historian data is limited and depends
mostly on MTU configurations. The historian doesn’t
store the current state of a PLC’s ladder logic and
firmware.

PLC Forensic Tools and Methodologies
PLC forensics is mostly an unexplored territory, cur-
rently limited to ICS network protocols.

Network Level
We recently developed a network forensic tool to analyze
the network traffic log of an ICS protocol, PCCC (Pro-
grammable Controller Communication Commands).11
The prototype tool can extract the low-level representa-
tion of a control ladder logic program, PLC system con-
figurations such as Simple Mail-Transfer Protocol (SMTP)
client, and the state of input and output devices. The proto-
col contains file type and file number fields for the function
codes 0xA2 and 0xAA for reading and writing to a PLC,
respectively. Interestingly, network traffic analysis reveals
several unknown file types, which we classified based on
their content. Table 1 presents the file types along with
the description of their content. SMTP client information
such as username, password, and to/from email addresses
is transferred in ASCII characters over the network.

Ken Yau and Kam-Pui Chow proposed a Control
Program Logic Change Detector, which derives a set of
detection rules using a ladder logic program.12 The rules
are then utilized to analyze network traffic of the PLC
running the ladder logic program and identify any unex-
pected (potentially anomalous) control variable values.

Tim Kilpatrick and his colleagues presented a net-
work forensics architecture in which network packets at
certain strategic locations were captured and followed
by reconstructing network events from the captured
packets. The architecture has two major components—
agents and the data warehouse.13 The agents capture
packets from network traffic from specific locations in an
ICS network. The architecture also has a synopsis engine
to create a summary for each packet. The packet is then
passed to the data warehouse. The data warehouse digi-
tally signs the summary of each packet and forwards it
to appropriate agents. The digitally verified summary is
later used as evidence for network forensic capabilities.

Craig Valli proposed using the Snort intrusion detec-
tion system (IDS) for the forensic investigation of Mod-
bus and DNP3 vulnerabilities and attacks.14 He created
a step-by-step procedure for forensic analysis including
creating environment scanning for anomaly detection
as a first step. Next, production and replay for each vul-
nerability is performed, then each vulnerability is ana-
lyzed, resulting in the creation of an IDS rule set. Finally,
testing of each rule set is performed.

Amit Kleinmann and Avishai Wool analyzed the net-
work traffic of Siemens S7 PLC and observed that the
traffic is highly periodic.15 Based on the observation,
they proposed an IDS that utilizes a deterministic finite
automaton to model the network traffic accurately. The
IDS achieves 99.26 percent accuracy.

Table 1. Classification of unknown file types based on content.

File type Classification

0x4C Simple Mail-Transfer Protocol configuration

0x49 Ethernet configuration

0x22 Ladder logic—control logic program

0x4D DNP3 configuration

0x95 Routing information

0x47 DF1 (asynchronous byte-oriented protocol) configuration

www.computer.org/security� 23

Device Level
A forensic investigation requires the acquisition and
analysis of data from suspicious PLCs.

Data acquisition. For live data acquisition, both vola-
tile and nonvolatile data should be acquired. Although
ICS protocols have function codes to read specific data
types, such as input, output, counter, and timer, from a
live PLC, these function codes can’t be used to acquire
the entire RAM and EEPROM content.

We analyzed two different PLCs (referred to as PLC
A and PLC B) from a major vendor regarding their
forensic capability. (The make and model of the PLCs
are anonymized to protect proprietary information.)
The main focus is on evaluating the possibility to eas-
ily acquire RAM and nonvolatile RAM (NVRAM) con-
tent, then dump and investigate the file system.

Table 2 summarizes the evaluation results. A positive
smiley means it’s easy to extract the type of information;
that is, the device supports the forensic analyst by pro-
viding extraction functionality.

A challenge in analyzing PLCs is extracting memory
content. Whereas PLC B at least dumps the dynamic
RAM (DRAM) to a flash card if it crashes (mainly for
debugging purposes), PLC A doesn’t offer any support.
However, neither device supported a DRAM dump
while in operation.

There’s little support for extracting PLC A’s NVRAM
(PLC B had none). Apparently, the only possibility is
to extract parts of the NVRAM through the PLC’s
real-time OS.

PLC A contains a compact flash card that stores the
entire file system. The card can be removed by opening the
device, and also contains the boot image in the boot sector
of the card and the entire configuration information. PLC
B’s built-in flash storage contains only the firmware; the
actual applications running on the controller exist only
in RAM. In the event of a power failure, a backup battery
keeps the RAM contents alive for a certain period of time.
The compact flash slot can be used to upgrade a control-
ler’s firmware or load applications onto the controller; or if
a compact flash card is inserted into the controller when it
crashes, a dump of the RAM of the controller will be writ-
ten to the compact flash card.

The difficulty in obtaining the PLC databases is con-
nected to the difficulty of acquiring the flash storage.
While PLC A exposes the complete device database,
PLC B stores all information in its RAM, which, as
pointed out, is very difficult to obtain.

Log files can be easily extracted for both PLCs, and
network statistics can also be extracted using the PLC
configuration tool.

In summary, both investigated devices have a differ-
ent design and architecture and use distinct tools for

configuration and management. This results in differ-
ences in the capabilities to extract specific information,
data artifacts, and memory content. In general, we rec-
ommend that device manufacturers consider forensic
capabilities early in their device life cycle.

Data Analysis
Saman A. Zonouz and his colleagues proposed combin-
ing symbolic execution and model checking to analyze
the code bounds of malicious injected PLC code.10 Sym-
bolic execution of PLC program code analyzes the causal
relationship between different inputs and the resulting
execution of program code. Model checking validates
the PLC code of the intended control system against the
specification of a model ICS. This combined approach
can be employed for forensic purposes to identify which
areas have caused PLC malicious code injection trials,
and which part of the code was the likely cause for such
execution. Thus, model checking can indicate that aber-
rant behavior has occurred, whereas symbolic execution
can point to the root cause of the execution.

Lucille McMinn and Jonathan Butts proposed a
firmware verification tool for forensically analyzing
the trials of altering firmware code to gain access over
the ICS network by any unauthorized person. This is
done by either comparing the firmware under test with
a good firmware version or analyzing the data captured
from the PLC and identifying whether the underlying
PLC’s firmware is modified.16

I ndustrial control systems support critical infrastruc-
ture services and have life cycles that span decades.

This introduces challenges that could not have been
foreseen and need to be addressed by other means.
PLCs, which execute an ICS’s control logic, are par-
ticularly vulnerable to network attacks; therefore,

Table 2. Evaluation of two programmable logic controllers’
(PLCs’) forensic capabilities.

Artifact PLC A PLC B

Dynamic RAM  

Nonvolatile RAM  –

Flash storage  

Databases  

Log files  

Network statistics  

24	 IEEE Security & Privacy� November/December 2017

DIGITAL FORENSICS, PART 1

developing the means to quickly diagnose and analyze
such attacks is critical.

Unlike the forensic analysis of a conventional IT
system, which has seen more than three decades of
active development, PLC forensics is still at an early
stage of development. This is partially due to the spe-
cialized nature of ICS and the prevalence of proprie-
tary and poorly documented protocols. Nonetheless,
over the past decade, researchers and practitioners
have adapted several core methods and tools from IT
forensics and security monitoring to the ICS world.
In particular, reverse engineering has resulted in the
public documentation of several ICS protocols, net-
work analysis tools have been adapted to parse and
interpret such protocols, and an emerging body of
work is targeting the direct analysis of PLC memory
content.

References
1.	 R.M. Lee, M.J. Assante, and T. Conway, Analysis of the

Cyber Attack on the Ukrainian Power Grid, tech. report,
SANS Inst., Washington, DC, 2016.

2.	 I. Ahmed et al., “SCADA Systems: Challenges for Forensic
Investigators,” Computer, vol. 45, no. 12, 2012, pp. 44–51.

3.	 S. East, “A Taxonomy of Attacks on the DNP3 Protocol,
Critical Infrastructure Protection, IFIP Advances in Informa-
tion and Communication Technology, vol. 311, Springer,
2009, pp. 67–81.

4.	 J. Weiss, Protecting Industrial Control Systems from Elec-
tronic Threats, Momentum Press, 2010.

5.	 B. Chen, “Implementing Attacks for Modbus/TCP Pro-
tocol in a Real-Time Cyber Physical System Test Bed,”
IEEE Int’l Workshop Technical Committee on Communica-
tions Quality and Reliability (CQR 15), 2015, pp. 1–6.

6.	 P. Huitsing et al., “Attack Taxonomies for the Modbus
Protocols,” Int’l J. Critical Infrastructure Protection, vol. 1,
Dec. 2008, pp. 37–44.

7.	 T.H. Morris and W. Gao, “Industrial Control System
Cyber Attacks,” Proc. 1st Int’l Symp. ICS and SCADA
Cyber Security Research (ICS-CSR 13), 2013, pp. 22–29.

8.	 C. Bellettini and J.L. Rrushi, “Combating Memory Cor-
ruption Attacks on SCADA Devices,” Proc. 2nd. Ann.
IFIP Int’l Conf. Critical Infrastructure Protection (IFIP 08),
revised papers, 2008, pp. 141–156.

9.	 L. Garcia et al., “Hey, My Malware Knows Physics!
Attacking PLCs with Physical Model Aware Rootkit,”
Proc. 24th Ann. Network and Distributed System Security
Symp. (NDSS 17), 2017.

10.	 S.A. Zonouz et al., “Detecting Industrial Control Malware
Using Automated PLC Code Analytics,” IEEE Security &
Privacy, vol. 12, no. 6, 2014, pp. 40–47.

11.	 S. Senthivel, I. Ahmed, and V. Roussev, “SCADA Network
Forensics of the PCCC Protocol,” Proc. 7th Ann. Digital
Forensics Research Conf. (DFRWS 17), 2017, pp. S57–S65.

12.	 K. Yau and K.-P. Chow, “PLC Forensics Based on Con-
trol Program Logic Change Detection Works,” J. Digital
Forensics, Security and Law, vol. 10, no. 4, 2015, pp. 59–68.

13.	 T. Kilpatrick et al. “Forensic Analysis of SCADA Systems
and Networks,” Int’l J. Security and Networks, vol. 3, no. 2,
2008, pp. 95–102.

14.	 C. Valli, “Snort IDS for SCADA Networks,” Proc. 2009
Int’l Conf. Security and Management (SAM 09), 2009, pp.
618–621.

15.	 A. Kleinmann and A. Wool, “Accurate Modeling of the
Siemens S7 SCADA Protocol for Intrusion Detection and
Digital Forensics,” J. Digital Forensics, Security and Law,
vol. 9, no. 2, 2014, pp. 37–50.

16.	 L. McMinn and J. Butts, “A Firmware Verification Tool for
Programmable Logic Controllers,” Critical Infrastructure
Protection, of IFIP Advances in Information and Commu-
nication Technology, vol. 390, Springer, 2012, pp. 59–69.

Irfan Ahmed is an assistant professor of computer sci-
ence at the University of New Orleans. His research
interests include industrial control system security,
digital forensics, and malware detection and analy-
sis. Ahmed received a PhD in computer science from
Ajou University. He’s an associate member of the
American Academy of Forensic Sciences. Contact
him at irfan@cs.uno.edu.

Sebastian Obermeier is the Group Research Area Man-
ager Software at ABB. His research interests include
IT security for industrial control systems and database
technology. Obermeier received a PhD in computer
science from the University of Paderborn. Contact
him at sebastian.obermeier@ch.abb.com.

Sneha Sudhakaran is a PhD student in the Depart-
ment of Computer Science at the University of New
Orleans. Her research interests include industrial
control system security and forensics. Contact her at
ssudhaka@my.uno.edu.

Vassil Roussev is a professor in the Department of Com-
puter Science at the University of New Orleans. His
research interests include network and mobile secu-
rity, digital forensics, big data security, privacy, and
usable security. Roussev received a PhD in computer
science from the University of North Carolina at Cha-
pel Hill. Contact him at vassil@cs.uno.edu.

Read your subscriptions through
the myCS publications portal at

http://mycs.computer.org

