Overshadow PLC to Detect Remote
Control-Logic Injection Attacks

Hyunguk Yoo!, Sushma Kalle!, Jared Smith?, and Irfan Ahmed!3

! University of New Orleans, New Orleans LA 70148
{hyoo1l,skallel}@uno.edu
2 Oak Ridge National Laboratory, Oak Ridge, TN 37830
smithjm@ornl.gov
3 Virginia Commonwealth University, Richmond VA 23221
iahmed3@vcu.edu

Abstract. Programmable logic controllers (PLCs) in industrial control
systems (ICS) are vulnerable to remote control logic injection attacks.
Attackers target the control logic of a PLC to manipulate the behavior of
a physical process such as nuclear plants, power grids, and gas pipelines.
Control logic attacks have been studied extensively in the literature, in-
cluding hiding the transfer of a control logic over the network from both
packet header-based signatures, and deep packet inspection. For instance,
these attacks transfer a control logic code as data, into small fragments
(one-byte per packet), that are further padded with noise data. To detect
control logic in ICS network traffic, this paper presents Shade, a novel
shadow memory technique that observes the network traffic to maintain a
local copy of the current state of a PLC memory. To analyze the memory
contents, Shade employs a classification algorithm with 42 unique fea-
tures categorized into five types at different semantic levels of a control
logic code, such as number of rungs, number of consecutive decompiled
instructions, and n-grams. We then evaluate Shade against control logic
injection attacks on two PLCs, Modicon M221 and MicroLogix 1400 from
two ICS vendors, Schneider electric and Allen-Bradley, respectively. The
evaluation results show that Shade can detect an attack instance (i.e.,
identifying at least one attack packet during the transfer of a malicious
control logic) accurately without any false alarms.

Keywords: Control Logic - PLC - SCADA - Industrial Control System.

1 Introduction

Industrial Control Systems (ICS) actively control and monitor physical pro-
cesses in critical infrastructure industries such as wastewater treatment plants,
gas pipelines, and electrical power grids. Since the discovery of Stuxnet in 2010,
an unseen nation-state malware that sabotaged Iran’s nuclear facilities, the
number of ICS vulnerabilities reported each year has been dramatically in-
creased [18], and sophisticated attacks targeting critical infrastructure continue
to occur [13, 14, 17, 20]. Designed to be isolated from the outside world, the

2 Yoo et al.

security of ICS environments was not a priority. However, these devices are in-
creasingly becoming connected to corporate networks and the broader Internet
for economic gain, more fluid business processes, and compatibility with tradi-
tional digital IT infrastructure [10, 22]. Unfortunately, their connectivity exposes
vulnerabilities and unrestricted access by remote and insider attacks.

Within the ICS domain, Programmable Logic Controllers (PLCs) directly
control a physical process located at a field site. Occurring in many ICS envi-
ronments [19], PLCs are controlled by remote control center systems such as a
human-machine interface (HMI) and engineering workstations via ICS-specific
network protocols, such as Modbus, and DNP3 [7]. A PLC is equipped with a
control logic that defines how the PLC should control a physical process.

Acting via channels exposed by the increasingly large threat surface of ICS
networks and devices, attackers can target the control logic of a PLC to ma-
nipulate the behavior of a physical process. For instance, Stuxnet infects the
control logic of a Siemens S7-300 PLC to modify the motor speed of centrifuges
periodically from 1,410 Hz to 2 Hz to 1,064 Hz repeatedly, resulting in device
failure. In most cases, the control logic of a PLC can be updated through the
network using modern, yet typically not encrypted PLC communication pro-
tocols. Exploiting this feature, various classes of remote control logic injection
attacks have been studied in the past, such as Stuxnet [8], Denial of Engineer-
ing Operations (DEO) attacks [24], and Fragmentation and Noise Padding [27].
Upon detection, a typical response may include blocking any transfer of control
logic over the targeted network. For instance, Stuxnet compromises the STEP 7
engineering software [8] in a control center to communicate with a target PLC
in a field site. Next, the malware transfers a malicious control logic program to
the PLC. Notably, this attack can be prevented if ICS operators prevent the
transfer of control logic over the network.

Recently, Yoo and Ahmed [27] presented two stealthy control logic injection
attacks, referred to as Data FExecution, and Fragmentation and Noise Padding
to demonstrate that an attacker can subvert both packet-header signatures and
payload inspection to transfer control logic to a PLC successfully. In the Data
Execution attack, an attacker deceives packet header inspection by transferring
control logic to data blocks of a target PLC and then, modifies the PLC’s system
control flow to execute the logic located in data blocks. Packet-header signatures
do not prevent the data blocks because they contain sensor measurement val-
ues and actuator state, which are normally sent to the human-machine interface
at the control center. In the Fragmentation and Noise Padding attack, an at-
tacker sends a control logic to a PLC in small fragments (typically one byte
per packet) and further adds a large padding of noise to evade traditional deep
packet inspection.

These attacks give adversaries a significant advantage over operators rely-
ing on existing modern protections against network-based attacks, which utilize
stealth-mechanisms. To that end, this paper presents a first-of-its-kind system,
Shade to detect control logic in an ICS network traffic when an attacker employs
both stealthy Data FEzxecution, and Fragmentation and Noise Padding attacks to

Overshadow PLC to Detect Remote Control-Logic Injection Attacks 3

compromise critical infrastructure networks. Shade observes ICS network traf-
fic to maintain a local (shadow) copy of a PLC’s memory layout using read and
write messages from and to the PLC. Our system scans the shadow memory as an
ensemble of supervised learning algorithms with 42 custom, domain-relevant fea-
tures of control logic code categorized into five types. These types lie at different
levels of semantics extracted from the PLC control logic code: 1) decompilation,
2) rung, 3) opcode identification, 4) n-gram, and 5) entropy.

We implement the attacks on two different vendors’ PLCs, Allen Bradley’s
MicroLogix 1400 and Schneider Electric’s Modicon M221. Note that these PLCs
are originally utilized by Yoo and Ahmed to demonstrate the attacks [27], and
we use them to recreate the attacks to evaluate the accuracy of Shade. Our
evaluation results show that while the traditional payload inspection fails to
detect these attacks, Shade can detect the transfer of all control logic programs
accurately without any false alarms. Furthermore, Shade’s performance overhead
lies at 2%, a necessary trait for ease of deployment into real-world ICS networks.

Contributions. Our contributions can be summarized as follows:

— We validate two recent stealthy control-logic injection attacks that can sub-
vert both protocol header signatures and deep packet inspection.

— We present Shade, which is a novel shadow memory approach to detect
control logic code in ICS network traffic when the stealthy control logic
attacks are employed.

— We study different types of the features on control logic code at different
semantic levels of a control logic and identify a best set of feature to achieve
optimal results, i.e., accurate detection of the transfer of control logic in-
stances in an ICS network traffic without any false positives.

— We evaluate Shade on real-world PLCs used in industrial settings.

— We release our datasets and the source code of Shade’.

Roadmap. We have organized the rest of the paper as follows: Section 2 pro-
vides the background. Section 3 presents the shadow memory-based control logic
detection technique, followed by its implementation and evaluation results in Sec-
tion 4 and Section 6 respectively. Section 7 covers the related work, followed by
the conclusion in Section 8.

2 Background: Control Logic Injection Attacks
Control logic is a program which is executed repeatedly in a PLC. It is pro-
grammed and compiled using engineering software provided by PLC vendors.
There are five PLC programming languages defined by IEC 61131-3 [11]: ladder
logic, instruction list, functional block diagram, structured text, and sequential
flow chart. A PLC is usually equipped with communication interfaces such as
RS-232 serial ports, Ethernet, and USB to communicate with the engineering
software so that control logic can be downloaded to or uploaded from a PLC.
In general, a control logic can be divided into four different blocks when
transferred to or from a PLC: the configuration block, code block, data block,
and information block. The configuration block contains information on the other

! https://gitlab.com/hyunguk/pledpi/

4 Yoo et al.

blocks (e.g., the address and size of the blocks) and other configuration settings
for the PLC (e.g., IP address of the PLC). The compiled code-block controls logic
code running in the PLC. The data block maintains the variables (e.g, input,
output, timer, etc.) used in the code block. Finally, engineering software uses
the information block to recover the original project file from the decompiled
source code when the control logic is uploaded to the engineering software.

In a typical control logic injection attack [8, 24], an attacker downloads ma-
licious control logic onto a target PLC by interfering with the normal PLC
engineering operation of downloading/uploading control logic. Stuxnet [8], a rep-
resentative example of this type of attack, infects Siemens SIMATIC STEP 7
(engineering software) and downloads malicious control logic to target PLCs
(Siemens S7-300) by utilizing the infected engineering software. The lack of au-
thentication measures in the PLC communication protocols results in successful
exploitation. In our experience, control logic downloading/uploading operations
do not support authentication or authentication is only supported in one direc-
tion, either download or upload.

Recently, Yoo and Ahmed [27] presented two stealthy control logic injection
attacks, referred to as Data Ezxecution, and Fragmentation and Noise Padding to
hide the transfer of control logic over the network from packet-header signatures
and deep packet inspection. We now cover these attacks in detail.

Data Execution Attack. The Data Execution Attack evades network intru-
sion detection systems (NIDS) that rely on signatures based on packet header
fields by transferring the compiled code of control logic to the data blocks of a
PLC. The data blocks exchange sensor measurement values and states of PLC
variables (e.g., inputs, coil, timers, and counters). Since control center ap-
plications (e.g., HMI) may frequently read and write on those data, the NIDS
signatures must not raise an alarm for data blocks in the network traffic of
ICS environments. Therefore, the attack evades the NIDS signatures by embed-
ding attacker’s logic code in data blocks. After transferring the logic code to
a PLC, the attack further modifies the pointer to the code block to execute
the attacker’s logic located in data blocks. This code could contain instructions
similar to Stuxnet, which would result in major ICS failures and costly repercus-
sions. Most PLCs in the market do not enforce data execution prevention (DEP),
thereby allowing the logic in data blocks to execute. However, this attack can
be subverted by payload-based anomaly detection.

Fragmentation and Noise Padding Attack. This attack subverts payload-
based anomaly detection by appending a sequence of padding bytes (noise) in
control logic packets while keeping the size of the attacker’s logic code in packet
payloads significantly small. The ICS protocol often have address or offset fields
in their headers, which are utilized by the attack to make the PLC discard the
noise padding.

In their study [27], they showed that both signature-based header inspection
and payload-based anomaly detection can be bypassed by an attack combining
the two stealthy attacks, i.e., transferring attacker’s logic code in a data block
while fragmenting the code and appending a noise padding.

Overshadow PLC to Detect Remote Control-Logic Injection Attacks 5

PLC protocol header

message A
9 b ! mirrored
!

Shadow | | l

Memory

b
K_Aﬁ
payload | [-
x-b X x+n x+n+b
\
v
scan area
Fig. 1. Shadow memory scanning

Wwrite request [aqqr:x [len:n | payload |

3 Shadow Memory-based Control Logic Detection

3.1 Shade - a Shadow Memory Approach

Generally, shadow memory refers to a technique to store information on memory
(e.g., whether each byte of memory is safe to access), which is utilized in most
memory debuggers [6, 9]. In this paper, however, we present shadow memory as
a mirrored space of the protocol address space of a PLC. We define the protocol
address space of a PLC as the range of space that can be addressed for payload
data through a PLC protocol. For example, if the write request message format
of a PLC protocol has a fixed 2-byte address field that specifies the byte offset
of data to be written, the address space of the PLC protocol will be 64KB.

The proposed approach referred to as Shade maintains shadow memory of
each PLC and detects control logic code by scanning the shadow memory rather
than the individual packet payloads. Briefly speaking, Shade works as follows:
when a write request packet to a PLC is identified in an ICS network traffic,
its payload data is reflected in the shadow memory. Shade uses packet-header
values to map the data at a correct memory location of the shadow memory
and excludes any excess data (such as noise) that resides in a packet payload
but is not written to the PLC memory. Note that attacker can exploit protocol
specifications to include noise data in a packet payload but does not write the
noise to PLC memory to avoid any risk of crashing the PLC. In Fragmentation
and Noise Padding, attacker manipulates header values to filter noise data when
the packet arrives at the PLC. After mapping a payload to shadow memory,
Shade scans the shadow memory to determine whether or not the control logic
code resides in the memory. Even though each attack packet of the Fragmentation
and Noise Padding attack contains a tiny size of code fragment with large noise,
it will eventually composes a detectable size of code chunk in the shadow memory,
thus making the proposed detection method effective.

Figure 1 depicts the mirroring and scanning of shadow memory. When a write
request packet is identified, its payload is mirrored to shadow memory according
to the packet’s address and length fields. Then, we scan the surrounding space
including the area where the payload is mirrored. We call the area scanned for
each write request packet the scan area. The range of the scan area is determined
by the payload size, the address of a write request packet, and the scan boundary
parameter b. With the address x and the payload length n, the lower bound of the
scan area is defined by M AX (0, x—b) and the upper bound is MIN (m,x+n+Dd),
where m is the highest address of shadow memory.

6 Yoo et al.

Instead of scanning the whole memory, we propose to scan a small chunk
of relevant shadow memory which is updated recently. This approach has two
advantages: 1) Avoid overhead, and 2) Reduce false alarms.

Avoiding overhead. Scan of a small memory chunk avoids significant perfor-
mance overhead. As we will show in Section 6, the overhead of shadow memory
scanning is 31.92% for the Schneider Electric’s M221 PLC with a boundary
parameter of 236 and 701 bytes of scan range in average. If we perform a full-
scanning for the M221 PLC, of which the shadow memory size is around 64KB,
the overhead will be unfeasible for a real-world deployment.

Reduce false alarms. Worse, full-scanning more often produces false positives.
If a non-code packet (e.g., a packet containing PLC variable data or configuration
information) is misclassified as a code packet, all the following non-code packets
will be misclassified as well unless the mirrored payload data of the initially
misclassified packet is removed from the shadow memory. However, clearing a
certain area of shadow memory makes the shadow memory inconsistent with the
actual state of a PLC, which could lead to failure of detecting attack packets
containing fragmented code later.

With partial-scanning, the scan boundary parameter b is a trade-off factor.
Increasing b would raise the true positive rate (increase sensitivity) but also raise
the false positive rate and performance overhead, and vice-versa. Assume that n
is the minimum size of the code fragment that can be detected by a classification
algorithm C| and k is the maximum payload size, then n must be smaller than
k if the classification algorithm C has high sensitivity for detecting logic code in
a packet payload.

With shadow memory, if a code chunk in the shadow memory is larger than
or equal to n, setting b with k ensures that the classification algorithm C can
detect it. Let’s assume that (n—1) bytes of code in shadow memory from address
z to (z +n — 1), and one-byte of attacker’s code fragment is being written to
shadow memory. If the one-byte code is written at the address (z —1) or (z+n),
then the size of code chunk will be n bytes which can be detected. Note that the
attacker can write different parts of a code in a random sequence, which may
delay the detection. However, the consecutive code size will end up exceeding
n-bytes of code chunk in the scan area and is detected by Shade.

3.2 Feature Extraction with Different Semantic Levels

In the training phase, Shade extracts 42 different features 1 from the scan area
of shadow memory, then it selects only the best features for training a classifier.
Figure 2 highlights the different features with varying semantic levels studied in
this paper. N-gram or entropy does not require any syntax or semantic knowledge
of the underlying data. On the other hand, features such as the number of the
identified opcodes, the number of the rungs, and the number of successfully
decompiled bytes require knowledge about the format and semantics of the data.

Decompilation of Control Logic Code. The feature #dec represents the
longest length of a byte sequence which is successfully decompiled. Decompila-
tion starts from each byte position in the scan area, recording the length of a

Overshadow PLC to Detect Remote Control-Logic Injection Attacks 7

Table 1. Extracted features

Feature Description
#dec The maximum length of decompiled byte sequence
#op The number of the identified opcodes
#rung The number of the identified rungs
#Ngram The number of the n-grams that are present in a bloom filter (1 < n < 20)
LNgram The longest continuous match of n-grams that are present in a bloom filter (1 < n < 20)
entropy The byte entropy of scan area

Full

High Low

Parti

Fig. 2. Varying level of semantic knowledge on control logic code

decompiled byte sequence for each position. Then, the longest length is selected
for the #dec feature.

Several studies [1, 3] utilize a disassembler to detect x86 machine code in
network traffic. Our decompilation approach is in some ways similar to those
studies. Decompilation of control logic code has a unique characteristic compared
to decompilation of a binary used in common IT systems. When compiling high-
level language code (e.g., C/C++, Java) to low-level code (e.g., machine code,
bytecode), finding the original structure of the high-level language code from the
low-level code is non-trivial due to compiler optimizations. On the other hand,
compilation of control logic code is performed in a manner that it is completely
reversible, i.e., decompilation of logic code recovers the exact source code. This
interesting design feature of control logic compilers makes it possible for the
engineering software to show the original source code to PLC programmers or
ICS operators when the control logic is retrieved from a PLC.

In our experience (with two engineering software, RSLogix and So-machine
basic of two different vendors, Allen-Bradley and Schneider Electric on two
PLCs, MicroLogix 1400 and M221), we find substantial one-to-one mappings
between the high-level language code of two PLC languages (i.e., Ladder Logic,
and Instruction List) and their (compiled) low-level code. This key discovery
allows Shade to utilize a substitution table for decompilation. The extent of de-
compilation can differ between the engineering software. In some cases, decom-
pilation of control logic code not only requires code blocks but also configuration
blocks. For example, operands of instructions in code blocks may only be offsets
from base addresses, with the base addresses stored in configuration blocks. If
configuration block is not available, the full-decompilation is impossible. In these
cases, Shade performs partial-decompilations.

Figures 3(a) shows an example of a full-decompilation for the Modicon M221
PLC. Each high-level language code is always mapped to the same low-level
representation. For example, a Ladder Logic instruction XIC I0.1 (examine if
input 1 is closed) is always mapped to (or compiled to) its low-level represen-
tation 0x7clc which is an RX630 machine instruction [26].

Partial Decompilation of Control Logic Code. On the other hand, a
full-decompilation of the MicroLogix 1400 logic code requires additional infor-
mation from a configuration block as well as code blocks [24]. Since an at-

8 Yoo et al.

i : The bytes that can’t be decompiled without . File Word Bit
configuration blocks Rung start Rungsize XIC ~ No. Offset Offset XIO

OTE M1
XICfIOAlAND XIC 108 (end O;rung) XIC M307 00 00] 8d 9a [20 00][c4 09 00 Lb_c__zigioo 00][c8 00

[fc 13 04][fc 8d][fc e6 72 00 00][£6 73 26 00] 00 00l be £7 16 00 [€4 00]\ Oa [04)Ce 4f} Oe 00 [BGc 00

[fc ea 72 3e 00~
fc ea 72 3e 00 OTE M498 (end of rung) 01 03 co_4f103 00))
XIC TON File No. (timer) OTE
<L decompiled to <} decompiled to
Rung 0: XIC 10.1 AND XIC 10.8 > OTEM1 Rung0: XIC IL:[bc4f]/0 AND XIO T4:[da4f]/DN -> TON T4:[ce4f]/0
Rung 1: XIC M307 > OTE M498 Rung 1: XIC T4:[ce4f)/TT > OTE B3:[cc4f]/3
(a) Full Decompilation (M221) (b) Partial Decompilation (MicroLogix 1400)

Fig. 3. Examples of full and partial decompilation of control logic

tacker does not necessarily send configuration blocks to a PLC for control-
logic injection, we should not assume that Shade can obtain the configura-
tion blocks for decompilation. Figure 3(b) shows an example describing how
Shade performs a partial-decompilation for the MicroLogix 1400 PLC. There
are two rungs (Rung O and Rung 1), each of which starts with the rung start
signature 0x0000 in low-level code. In Rung 1, Shade decompiles 0xe400 to
XIC since the opcodes of Ladder Logic instructions of MicroLogix 1400 are
always mapped to the same low-level code [24]. The system also knows the
operand type of the XIC instruction is the timer object based on its file num-
ber (0x04). However, since control logic can have multiple timer objects, Shade
does not know the timer object that corresponds to the XIC instruction. The
engineering software of the MicroLogix 1400 PLC calculates the exact operand
by (Word of fset — Base address)/Size of object where the base addresses of
each object type is stored in the configuration block.

Shade leaves the low-level codes of those operands but counts the number
of decompiled bytes as if the corresponding bytes are decompiled when they are
between decompiled byte sequences. In the above example, the 2-byte hex values
highlighted in bold are the operands that can not be decompiled without the
configuration block. But Shade counts the number of decompiled bytes as 54
(the total size of Rung 0 and Rung 1), even though parts of operands are not
actually decompiled. Importantly, the purpose of decompilation in Shade is not
recovering the source code, rather counting the number of decompiled bytes.

Opcode & Rung Identification. Control logic code consists of one or more
rungs and a rung consists of one or more instructions. Typically, a rung has input
(e.g., Examine-if-closed:XIC, Examine if open:XIO) and output (e.g., Output
energize:OTE, Output Latch:OTL, Timer-on-delay:TON) instructions where a
logical expression of the inputs is evaluated and the state of the outputs are
changed based on the evaluation result in each PLC scan cycle.

To count the number of opcodes, Shade finds all occurrences of opcodes in
the scan area, utilizing a table containing the mapping of opcodes between high-
level code and low-level code. Unlike decompilation, the opcode identification
does not utilize other semantics of logic code (e.g., rung structures). The rungs
of control logic code are identified based on the knowledge of rung structures. In
the case of MicroLogix 1400, rungs explicitly start with a signature (0x0000),
followed by a field specifying the size of rung. On the other hand, the logic code

Overshadow PLC to Detect Remote Control-Logic Injection Attacks 9

of the Modicon M221 PLC can be separated into rungs in a different way. We
will discuss this in detail later in Section 4.

N-gram Bloom filter & Entropy. A common method in natural language
processing, N-gram analysis extracts features from data without any semantic
knowledge or the format of data. This method has been employed in a variety
of applications, including packet payload inspection [2, 4]. Two primary ap-
proaches allow the construction an n-gram feature space from a packet payload:
1) counting the frequency of each n-gram, 2) counting the n-gram membership
in a pre-defined n-gram set

Counting the n-gram frequency. In this approach, payload data is embedded
in a vector space of 256" dimension where n is the size of n-gram. This approach
suffers when n is greater than 1, resulting in a sparse matrix being used for
training a classifier. This is due to the large vector space compared to the typical
payload sizes of PLC protocols?.

Counting the n-gram membership in a pre-defined n-gram set. The second
approach counts the number of n-grams that present or absent in a pre-defined
n-gram set. For example, Anagram [4] stores all the unique n-grams of the normal
packet payload in a bloom filter in the training phase, then counts the number
of the n-grams of a testing packet payload that are absent in the bloom filter,
to score the abnormality of each packet. Fortunately, the feature space of data
in this approach is simply one-dimensional regardless of the size of the n-gram,
which allows a higher order n-gram to be used. Generally, a high order n-gram (n
> 1) is more precise than a 1-gram to detect anomalous packets. This approach
also provides more resistance against mimicry attacks [4].

Building off its advantages, Shade employs the latter approach to extract
two different types of n-gram features (i.e., #Ngram, LNgram). Before training
a classifier, Shade stores in bloom filters all the unique n-grams of normal write
request message payload containing logic code, for each n-gram size (1 < n <
20). Then, Shade extracts two different types of n-gram features utilizing the
bloom filters: 1) the number of n-grams present in the corresponding n-gram
bloom filter, 2) the maximum number of consecutive n-grams in the bloom filter.

For the entropy feature, Shade calculates the Shannon Entropy of the byte
value of the payload data.

3.3 Feature Selection & Classification

In the training phase, we evaluate each feature individually using a one-dimensional
Gaussian Naive Bayes classifier [21] to select the best features for generating
classification models. We employ two classic, explainable machine learning algo-
rithms: 1) Gaussian Naive Bayes and 2) Support Vector Machine (SVM). With
these algorithms, we then generate classification models and compare the de-
tection performance of each. As we will show in Section 6, neither algorithm
performs significantly better than the other. Critically, however, the use (or
non-use) of shadow memory contributed significantly to the success of attack
detection within the ICS environment.

2 The maximum payload sizes are 236 bytes and 80 bytes for the Modicon M221 PLC
and the MicroLogix 1400 PLC, respectively

10 Yoo et al.

4 Implementation

We implement Shade for two different vendors’ PLCs, Schneider Electric Modi-
con M221 and Allen Bradley MicroLogix 1400. To demonstrate the effectiveness
of Shade against both Data Fxecution, and Fragmentation and Noise Padding
attacks, we evaluate and compare both Shade and traditional deep packet inspec-
tion (DPI). Specifically, Shade extracts features from the scan area of shadow
memory while the DPI extracts them from the packet payload. To allow easy
reproducibility, we leverage Python using the open-source Scapy packet manip-
ulation library.

4.1 Shade implementation for the M221 PLC

M221 Opcode & Rung Identification. To identify opcodes in the M221
logic code, we developed a table which maps the opcodes of Instruction List
to its low-level code. For the rung identification, we utilize the following rule of
rung structure applied to the M221 logic code. We separate rungs in two cases: 1)
after an output instruction (e.g., ST %Q0.0 to energize coil 0) directly followed
by an input instruction (e.g., LD %I0.0 to examine if input 0 is closed), 2) after
the signature, 0x7f1a11, which represents the end of block.

Full-Decompilation of M221 Logic Code. Since all the necessary informa-
tion to recover the original source code is contained in the code block of the M221
control logic, Shade can perform a full-decompilation. Along with a substitution
table which maps Instruction List code to its low-level code, Shade employs the
knowledge of the code’s block structure.

The M221 logic code contains three types of blocks: function blocks, com-
parison blocks, and operation blocks. The M221 PLC uses pre-defined function
blocks such as TON(Timer On-Delay) and CTU(Counter up). A function block
starts with the signature 0x7f1a10. The comparison blocks provide relational
operations (e.g., =, <), while the operation blocks provide arithmetic and logical
operations. They start with signatures 0x7f1aXX where the third byte indicates
the operator and operand type (e.g., addition with integers: 0x04; addition with
floating-point numbers: 0x39).

Figure 4(a) shows an example of decompilation of a simple operation block.
The first three bytes 0x7f1a3c indicate an operation block performing division
with two floating-point numbers. The sixth and seventh bytes (0x32) indicate
two source operands as float wvariables. The following byte sequences 0x0281,
0x0481, and 0x0681 are decompiled to corresponding float type variables, %MF1,
%MF2, and %MF3 respectively. The recovered source code indicates that the result
of %MF2 divided by %MF3 is assigned to %MF1.

When operation blocks are nested, a temporary variable encoded as 0xc290
is involved. This temporary variable is only visible in low-level code and we will
refer to it as TEMP. Figure 4(b) shows an example of decompilation of nested
operation blocks. The third byte in the first line of low-level code denotes the
first operation block as multiplication with floating-point numbers. The seventh
byte (0x29) indicates that the second operand on the right-hand side of the as-
signment operator is a float type constant. The next two bytes (0xc290), used
for a destination operand, are converted to a TEMP variable. Then the last four

Overshadow PLC to Detect Remote Control-Logic Injection Attacks 11

First operand on right side s i TEMP variable
Block start : float variable %MF2 3.0
7f 1al[3p] 6a 00 [32][29]ic2_90i[oa 81][oo 00 40 4q
) 7f la|[3c| 6d 00 [32][32]ic2 90iic2 90i[a2 81}—>%MF81
%MFS Ire 1all3o] 62 00 [32]|29|[62 1]ic2 90i[00 00 40 47
- . (second variable of right side)
Division with floats . d l
First operan type Second operand on right side o\ o1 0
Block start on the right side: float variable Operator - float constant :
type . . .
64 00 52> 8102 8106 81 @ decompiled to intermediate code
TEMP := %MF2 * 3.0
Second operand type %MF1 %MF2 TEMP := TEMP / %ME81
on the right side: float variable (left side) (first variable of right side) 9%MF1 := TEMP + 12.0
@ decompiled to source code @ converted to final source code
[%MF1 := %MF2 / %MF3] [%MF1 := (%MF2*3.0)/ %MF81 +12.0]
(a) Single operation block (b) Nested operation block

Fig. 4. Decompilation of operation blocks of M221 control logic code

bytes, 0x00004040 (little-endian), are converted to 3.0 by the IEEE 754 stan-
dard. In this manner, we first convert the low-level code to an intermediate code
representation using the TEMP variable, which we then convert to the final source
code variant.

M221 Shadow Memory. The proprietary protocol used in the M221 PLC
has two 2-byte size address fields: the address type and the address fields [27].
Shade dynamically allocates 64KB of shadow memory space for each address
type when the PLC first use an address type in a write request message. Given
that the M221 PLC only employ a few designated address types, the size of the
shadow memory always lies between 64KB to 320KB.

4.2 Shade implementation for the MicroLogix 1400 PLC

MicroLogix 1400 Opcode & Rung Identification. To identify opcodes in
the MicroLogix 1400 logic code, Shade then utilizes a mapping table developed
n [24]. With insight derived from this mapping, Shade maps the opcodes of
ladder Logic to their low-level byte code. In a similar fashion, when we conduct
rung identification, the rung starts with the signature (0x0000) and the rung size
field are utilized. From the start address of the scan area, Shade automatically
searches all rung start signatures. When Shade discovers a rung’s start-signature,
it checks if the size of the rung is at least 8 bytes, the minimum rung size of the
MicroLogix 1400 logic code. Then, if the offset of the next rung’s start-signature
is correct (i.e., offset of the current signature + size of the current rung), Shade
counts the current rung as a valid rung.

Partial-Decompilation of MicroLogix 1400 Logic Code. Recall that, since
the full-decompilation of MicroLogix 1400 logic code requires configuration blocks
as well as code blocks, Shade performs a partial-decompilation. Shade starts de-
compilation from each byte position in the scan area. Decompilation from a byte
position ends in one of following conditions: 1) END instruction (which indicates
the end of code), 2) undefined opcode, 3) invalid operand, and 4) invalid rung
structure. The first and second conditions are straightforward. For the third con-
dition, Shade can verify the bit offset of operands, although it cannot verify the

12 Yoo et al.

word offset (due to the lack of configuration blocks). Since the size of data type
addressed by the word offset is 16-bit, the valid range of bit offset should be
between 0x0000 to 0x000f. On the other hand, the validity of a rung structure
is checked by examining if the rung size is correct and the rung contains at least
one instruction.

MicroLogix 1400 Shadow Memory. The PCCC protocol used in the Mi-
croLogix 1400 PLC has four fields for addressing [24]: file number, file type,
element number, and sub-element number. Shade allocates 64KB of shadow
memory space for each {file number, file type, element number} tuple. Basically,
each 64KB of shadow memory space corresponds to a specific file?, since the
element number is always 0x00 and the sub-element can be up to 2-byte size.

5 Description of Datasets

Table 2 describes the datasets that will be evaluated later in Section 6. We gen-
erate these two datasets for two different, but widely-deployed vendors’ PLCs:
Schneider Electric’s Modicon M221 and Allen-Bradley’s MicroLogix 1400 PLCs,
using corresponding engineering software, SoMachine Basic v1.6 and RsLogix
500 v9.05.01 respectively. We contribute and evaluate four distinct datasets for
each PLC i.e., training and attack datasets for both DPI and Shade. The datasets
in this evaluation are modeled after the network packet datasets used in [27],
which allow us to conduct a fair evaluation on Shade. The network packet
datasets contain 51 and 127 unique control logic programs written in Ladder
Logic and Instruction List for MicroLogix 1400 and Modicon M221 PLCs re-
spectively* [27], among them 22 and 52 (binary) programs of each Modicon
M221 and MicroLogix 1400 are used to generate bloom filters, while the rest are
used to generate our novel datasets.

Based on the training datasets (DSMQQI/ML1400’Packet/shadow) which do not
involve any evasion attacks, we use a supervised learning approach for our clas-
sification task to distinguish code and non-code packets. Note that our goal is
not to distinguish malicious/benign logic but to identify all the control logic
being transferred over the network even if evasion attacks are engaged. Accord-
ingly, the control logic programs themselves in our datasets are not specially
malicious. They are just numbers of unique control logic programs with varying
complexity generated to encompass as many different characteristics of control
logic programs as possible.

In our evaluation scenario (Section 6), we assume that any attempt to down-
load control logic to a PLC is a malicious action that should be recorded or
alarmed. This approach is particularly reasonable in the ICS domain because
usually control logic update of a PLC is a rare event. Therefore, ICS operators

3 In Allen-Bradley PLCs, each control logic block is called as a file

4 The control logic programs were collected in two ways: 1) Generated in a lab envi-
ronment using venders’ engineering software and PLCs 2) Downloaded from various
sources on the Internet (e.g., pletalk.net). Collectively, they are written for different
physical processes (e.g., traffic light system, elevator, gas pipeline, hot water tank)
with varying instructions and rung complexity

Overshadow PLC to Detect Remote Control-Logic Injection Attacks 13

(bytes) (bytes)
500 180

160

140
120 x
o
100
80
200
150 X 60
X
-
50 ([- 20 5 g 5 5
—x — — 4 o l_;_| 3 V_;j
DS DS DS DS AS AS

S 3 5

AS AS DS DS DS DS As As As AS
Packet Packet ~ Shadow Shadow Packet Packet Shadow Shadow Packet ~ Packet Shadow Shadow Packet Packet Shadow Shadow
(non-code) (code) (non-code) (code) (non-code) (code) (non-code) (code) (non-code) (code) (non-code) (code) (non-code) (code) (non-code) (code)

Fig. 5. Population of decompiled bytes (Left: Modicon M221, Right: MicroLogix 1400)

Table 2. Description of the datasets
of write # of packets Avg. # of Avg. # of dec. Avg. # of dec.

Datasets req. packets of logic code scanned bytes bytes (non-code) bytes (code)
DSwni221, Packet 1535 38 216 1.3 97.4
DSwnzz1,Shadow 1535 38 679 1.5 155.2
ASmze1,Packet 5362 3865 231 1.3 0.2
ASwre221,Shadow 5362 3865 701 1.5 121.9
DSwn11400,Packet 5,465 684 52 1.9 61.8

DSMLM(){},Shadow 5,465 684 170.7 2.9 125.1
ASML 1400, Packet 29,647 24,866 40.6 1.7 0
ASML1400,Shadow 29,647 24,866 185.8 2.8 62.2

want to be informed of the existence of any control logic code in the network
traffic for further decision making or forensic analysis. It would be also worth to
mention that our approach complements control logic verification techniques [16]
to distinguish malicious/benign logic. Note that identifying control logic must
be done to verify it.

5.1 M221 Datasets

Training Datasets. We generate the DSy221, packet dataset based on the net-
work captures of control logic downloading to a PLC, which does not involve
evasion attacks (i.e., our approach performs the control logic download oper-
ation using PLC-specific engineering software), while we extract features from
an individual packet. Next, we produce DSur221 Shadow from the same network
captures, except we extract each feature from the scan area of shadow memory
(employed in Shade), and not the packet payload.

The boxplot on the left side of Figure 5 displays the population of decompiled
bytes in the Modicon M221 datasets. As shown, clear differences exist between
non-code and code packets in both packet-basis DPI and Shade, providing intu-
ition that distinguishing between code and non-code packets would be possible
by either method if no evasion attacks are present.

Attack Datasets. The AS221, Packet and ASn221,Shadow datasets involve both
the Data Execution, and Fragmentation and Noise Padding attacks, while the
former dataset is generated based on packet payload and the latter is based on
the shadow memory. Unlike the training datasets, which do not involve any eva-
sion attacks, the populations of decompiled bytes are entirely different between
packet-basis DPI and Shade, as shown in the left boxplot in Figure 5. It implies

A DSMZZI,Packet --X-- 'DSMZZI,Shadaw ¢ ASMZZLPacket oo dllees ASMZZI,Shadaw

Detection Rate (%)
[=2)
o

entropy $m%

£
o
o
)
—
pa
4

L2gram
L3gram
L4gram
L5gram
Légram
L7gram
L8gram
L9gram
L10gram

£
e
)
)
=
*

#13gram

£ E £
£5 g
€5 s
oo bo oo
o O ~
28]
I+ -
on d

test the Modicon M221

2— DSpy11400 packet =~ >~ DSppi1400,shadow — ASwi1400packet *** B ** ASii1400,shadow
i B S o O AR R AR - Wl el e
- -

i
1S)
o

80 ¥\
60
40
20

Detection Rate (%)

o

#dec
r
r
r
(£
(£
r
r
r
(£
(£
r
r
r
r
(£
(£
r
r
r
(£
(£
r
r
r
r
(£
r
r
r
r
(£
r
r
r
r
I
(£
r
entropy @+

&
e
n
X
=
=
@
=
@
0
=}
=

that packet-basis DPI does not effectively identify code packets, but Shade does,
based on the feature of decompiled bytes.

5.2 MicroLogix 1400 Datasets

Training Datasets. We generate the DSwr1400, Packet and DSarr1400,Shadow
datasets based on the network captures of control logic downloading to a PLC,
which again, does not involve any evasion attacks. Like the other PLC, one
involves packet-basis DPI and the latter utilizes Shade.

Attack Datasets. The ASnr1400, Packet and ASn11400,Shadow datasets then con-
tain the Fragmentation and Noise Padding attacks, in the same manner as the
prior PLC. We extract the features of ASr1400, Packer from an individual packet
payload (packet-basis DPI), while we extract those of ASnr1400,Shadow from the
scan area of shadow memory (Shade).

Similar to the Modicon M221 attack datasets, we investigate the populations
of decompiled bytes between code and non-code packets, finding a lack of dis-
tinguishable traits in the ASar1400, Packer dataset. Converesely, their differences
can be clearly identified in the ASwr1400,Shadow dataset. This difference can be
shown in the right boxplot in Figure 5.

6 Experimental Evaluation

6.1 Feature Selection

In the training phase, we evaluate each feature in each dataset individually
with a (one-dimensional) Gaussian Naive Bayes, selecting the most performant
features for a binary-classification scenario. Figure 6 and 7 show the feature test
results for Modicon M221 and MicroLogix 1400, respectively. The vertical axis
represents the detection rate (true positive rate) at an unprecedented 1% false
positive rate (FPR) for this particular classification problem.
Since no feature works effectively for the attack with packet-basis DPI datasets,

we select features based on the rest of the datasets. The feature of the number

Overshadow PLC to Detect Remote Control-Logic Injection Attacks 15

of decompiled bytes (#def) shows the highest performance among all the seman-
tic features for both PLCs. On the other hand, L{gram is the best among the
non-semantic features (i.e., n-grams, entropy) for Modicon M221 while #8gram
is the best for MicroLogix 1400. Based on this result, the features of #dec and
L4gram are selected for the Modicon M221 while #dec and #8gram are selected
for the MicroLogix 1400.

Interestingly, specific size of n-gram features show similar or better detection
rates than the #dec feature even though decompilation involves the highest
semantic knowledge of control logic code, while n-gram does not require any
semantic knowledge. Further analyzing the potential root cause, we found that
some byte sequences in the non-code data were falsely decompiled, especially
in the MicroLogix 1400 datasets. In the MicroLogix 1400 logic code, we often
find the byte pattern of 0x0000{Rung Signature}{Rung Size}{Opcode} where
0x0000 represents the start of a rung. Since Shade cannot verify the two bytes of
the Rung Signature, the system marks the byte sequence from 0x0000 to Rung
Size as decompiled if Rung Size (two bytes) is valid (>8) so long as the two
bytes of the Opcode is in the mapping table. Note that Shade will not mark the
Opcode bytes as decompiled until it first verifies its operand part (e.g., operand
size, the bit offset).

Interestingly, this indicates that this byte pattern, and potentially others, can
be found in non-code data as well (although it is not often across all samples, it
is non-negligble), since the byte sequence of 0x0000 commonly appears in non-
code data. Beyond appearing in non-code data, we also find that the valid range
of the rung size in this instance is significantly wide. On the contrary, the best
n-gram feature for the MicroLogix 1400 is an 8-gram. This feature type involves
a relatively large information space (256%), indicating it would be less likely that
an arbitrary 8-byte sequence in non-code packets happens to be a member of
the 8-gram bloom filter.

We found another key insight regarding the optimal size of n-gram features.
Specifically, we find a different n-gram optimal size for each PLC (i.e., 4-gram
for Modicon M221 and 8-gram for MicroLogix 1400). As the size of n-gram
increases, we see little improvement in detection rate at small n-gram sizes.
Critically however, as the size approaches certain size boundary, we see a steep
rise in the successful detection rate. Gradually, the detection rate declines as the
n-gram size rises beyond this boundary. Related to this discovery, we note that
the #Ngram and LNgram features show similar detection rates when the size of
the n-gram is the same, implying that the size of an n-gram is a more important
factor than whether or not the pre-defined n-grams are continuously present.

6.2 Classification Results

Based on the selected features, we employed two classic machine learning algo-
rithms, the Gaussian Naive Bayes and a Support Vector Machine (SVM) with
robust, non-linear RBF kernel. We utilize these models to generate two indepen-
dent sets of classification results and then compare the detection performance
of each. Figure 8 highlights the ROC curves with an FPR limit of 1%. For the
training datasets, it represent a mean ROC curve generated by 10-fold cross-

16 Yoo et al.
1wl bl L 58]
0.9
o 08
% g; —2— DSy151 packet —2— DSy1351 packet —a— DS-Packet —a— DS-Packet
2 05 = =% = DSy131,shadw =% = DSwz51,shadw - =% - DS-Shadow - =% - DS-Shadow
§ 0.4 —+— ASm1 packet —— ASp221,packet —— AS-Packet —&— AS-Packet
$03 <+ aee+ ASy1251,shadow *e e ASwizp1,shadow ---4--- AS-Shadow ++-a-.- AS-Shadow
=02
0.1
0

S}
P

False Posivie Rate False False Posivie Rate

a) Nave Bayes with features b) SVM with features @) Na've Bayes with features b) SVM with features
{#idec, L4gram} — M221 {#dec, Lagram} —M221 {#dec, #8gram} - ML1400 {#dec, #8gram} — ML.1400

osivie Rate False Posivie Rate

Fig. 8. ROC curves with 1% of FPR limit

validation. For both PLCs, packet-basis DPI shows near 0% of detection rate
against the evasion attacks regardless of the classification algorithms. By con-
trast, Shade shows above 96% of detection rate in all cases with 0.1% of the
FPR limit. As displayed in Figure 8, the types of classification algorithms do
not significantly affect the detection rate, but the use of shadow memory
has created a critical difference. Notably, our findings validate empirically
that the evasion attacks from [27] are in-fact effective against traditional packet-
basis DPI, yet Shade can successfully detect these attacks.

We further analyze the detection results to calculate the detection rates of
each attack instance. We consider each control logic program as a unique attack
instance. For example, we assume that there are 29 attack instances against
the Modicon M221 PLC since there are 29 unique control logic programs in the
attack datasets. Likewise, there are 75 attack instances against the MicroLogix
1400 PLC. We mark each attack instance as detected if we detect one of its code
packets. Note that a control logic program will not be successfully executed in
a PLC if one of its code fragment is missing.

Table 3 and 4 show the detection rates of attack instance at 0% FPR. These
tables also show how the detection rate varies with differing feature sets. We
used only the SVM classification models for this analysis. For every feature set
for Modicon M221, Shade perfoms with a 100% detection rate of attack instances
while packet-basis DPI shows 0% detection rate, due to the evasion techniques
of the attacks described in the earlier background. For packet detection instead
of instance detection, the feature set of {#def, Ljgram} performs best with a
detection rate of 97.52%. We find similar results for the MicroLogix 1400 (refer
to Table 4), indicating Shade and the evaluation approach we employed apply to
two distinct, yet practically deployed PLCs on the market. The attack instance
detection rates reach 100% in Shade while the packet detection rates are slightly
different depending on feature set. We find the best packet detection rate of
95.68% with the feature set of {#def, #8gram} using Shade. As found with the
other PLC, once again the packet-basis DPI fails to find any success, at 0%
detection rates on both attack packets and instances.

6.3 Scan Boundary Parameter and Performance Overhead

In the previous evaluation results, we set the scan boundary parameter b to the
maximum payload size of a PLC protocol, i.e., 236 for Modicon M221 and 80 for

Overshadow PLC to Detect Remote Control-Logic Injection Attacks 17

Table 3. Detection rates at 0% FPR - M221

Feature Packet-basis DPI Shade
Set Attack packet|Attack instance| Attack packet Attack instance
{#dec} 0% (0/3865) 0% (0/29) [92.23% (3565/3865)| 100% (29/29)
{L4gram} 0% (0/3865) 0% (0/29) [95.08% (3675/3865)| 100% (29/29)
{#dec,L4gram}| 0% (0/3865) 0% (0/29) [97.52% (3769/3865)| 100% (29/29)

Table 4. Detection rate at 0% FPR - MicroLogix 1400

Feature Packet-basis DPI Shade
Set Attack packet|Attack instance Attack packet Attack instance
{#dec} 0% (0/24866)| 0% (0/75) |92.39% (22974/24866)| 100% (75/75)
{#8gram} |0% (0/24866)| 0% (0/75) [93.90% (23348/24866)| 100% (75/75)
{#dec,#8gram}|0% (0/24866)| 0% (0/75) |95.68% (23793/24866)| 100% (75/75)

Table 5. Performance according to scan boundary b (FPR: 0%) - M221

Shade Packet DPI
b (boundary)|236 (Max)| 16 (4n) 8 (2n) | 6 (1.5n) 4 (n) -
Attack 93.69% 84.58% 64.19% 54.77% 6.88% 0%
Packet (3621) | (3269) | (2481) | (2117) (266) (0)
Tnstance |100% (29)|100% (20)|100% (29)|100% (29)|68.97% (20)| 0% (0)
Time (sec) 16.82 13.29 13.27 13.01 12.9 12.75
Overhead 31.92% 4.24% 4.08% 2.04% 1.18% -

Table 6. Performance according to scan boundary b (FPR: 0%) - MicroLogix 1400

Shade Packet DPI
b (boundary)| 80 (Max) | 32 (4n) | 16 (2n) |12 (1.5n) 8 (n) -
Attack 94.25% 92.76% 91.17% 87.71% 29.30% 0%
Packet | (23437) | (23065) | (22670) | (21810) | (7286) (0)
Tnstance |100% (75)|100% (75)|100% (75)|100% (75)|97.33% (73)| 0% (0)
Time (sec) 421.2 416.9 415.6 414.6 414.0 410.8
Overhead 2.53% 1.48% 1.17% 0.93% 0.78% -

MicroLogix 1400. However, we believe it would also be interesting to examine
how b affects the detection rate and performance overhead. For this purpose, we
examine varying configurations of b between n to the maximum payload size,
where we set n to the size of the selected feature of the n-gram for each PLC
(i.e.. In our analysis, n is 4 for the Modicon M221 and 8 for the MicroLogix
1400). In this analysis, we use the n-gram feature alone (without #dec) for each
PLC, i.e., L4igram for Modicon M221 and #8gram for MicroLogix 1400. This
was conducted with Gaussian Naive Bayes classifiers.

Our findings are highlighted in Table 5. Specifically, the results show de-
tection rates at 0% of FPR and time overhead for Modicon M221. We average
the time from 10 individual executions to ensure consistency. The baseline of
overhead computation is the packet-basis DPI which does not employ shadow
memory. When b is equal to or greater than 6 (1.5n), Shade detects all the attack
instances while the detection rates of attack packets are different depending on
the configured value for b. When b is 236 (the maximum payload size for Modi-
con M221), the approach taken by Shade shows the best packet detection rate of
93.69%, with a temporal cost of 31.92% performance overhead.. However, as we
discussed earlier, this is enough for a defender to prevent remote control-logic
injection attacks if she can detect all the attack instances over the network, since
an attacker’s control logic program cannot be executed successfully in a PLC if
a missing code fragment exists. Therefore, the optimal configuration of b can be

18 Yoo et al.

6 with which Shade detects all the attack instances with only 2.04% of over-
head. As for memory, Shade allocated 196KB for shadow memory throughout
the execution.

In the case of the MicroLogix 1400 (refer to Table 6), we set n to 8 because
#8gram performed best among n-gram features. When b is equal to or greater
than 12 (1.5n), Shade shows 100% of attack instance detection rate. The highest
attack packet detection rate is 94.25% when b is 80 (the maximum payload
size for the PCCC protocol) with 2.53% of time overhead. In the MicroLogix
1400 case, the optimal configuration of b can be 12 (1.5n), where we find Shade
performs at 100% of attack instance detection rate with only 0.93% of overhead.
We find a slightly higher total allocated memory size for the shadow memory in
the case of the MicroLogix PLC, at 6.16MB throughout the execution.

Performance overhead is an important factor especially in the ICS domain
where prompt responses on the attacks attempt to manipulate physical process
is critical. Furthermore, when Shade is deployed in a network-based IPS, rapid
decision making is necessary to minimize the delay on the communication over
the network. Note that for some types of ICS domain specific messages, their
transfer time requirements could be very tight. For instance, the IEC 61850-5
standard specifies performance requirement for different types of messages for
electrical substations [12], and it requires that the transfer time must not exceed
3 ms for the messages of trips and blocking.

6.4 Discussion on the Evaluation Results

The evaluation results clearly signal that the shadow memory approach via Shade
performs signficiantly well for detection of stealthy control logic injection attacks,
whereas the traditional packet-basis DPI fails in all cases. These findings also
suggest detection models rely most strongly on the features of decompiled bytes
and a certain size of n-gram in the ICS domain, specifically control logic. Gener-
ally, generating a decompiler for the control logic code of a PLC may require a
painstaking set of reverse engineering tasks. On the other hand, n-gram features
require no semantic knowledge of control logic code, thus these can be gener-
ally applied to other PLC types. In an environment such as ICS, where the
operating systems and instruction architectures vary significantly more than the
standard Windows, Mac, or Linux-based distros in traditional IT, this critical
device-independent semantic analysis may be a promising, less costly path for-
ward both for operator deployment and future academic research. In a similar
manner, the 0% FPR assuages concerns of false alarms in practice, a far worse
situation in the ICS domain over traditional false alarms for malware detection
or network intrusion detection in IT environments. Wasting an analyst’s time
in the IT domain may only result in a user’s computer being confiscated or
re-imaged for compliance reasons. However, shutting down a water treatment
plant’s PLC network or nuclear reactor control system and then later discover-
ing it was a false alarm can cost both significant financial resources as well as
put human lives in danger.

Overshadow PLC to Detect Remote Control-Logic Injection Attacks 19

We conjecture that the reason for the 0% FPR is because our classification
approach is a type of misuse detection® rather than an anomaly detection. How-
ever, unlike common misuse detection scenarios in the IT domain, our approach
should not be limited to detecting existing control logic injection attacks. In the
case when an attacker wants to download logic to a PLC, the attackers logic
code necessarily shares some common characteristics of control logic code (e.g.,
opcode, rung structure, etc.).

Deployment scenario. Shade needs to see the network traffic between an engi-
neering workstation and PLCs. In most cases, the engineering workstation is at
a control center network based on TCP/IP and Ethernet. Therefore, Shade can
utilize network taps at the control center network to monitor the network traffic
between the engineering workstation and PLCs. On the other hand, Shade also
can be deployed in a network-based IPS or industrial firewall [28].

7 Related Work

Control Logic Injection Attacks. Stuxnet [8] best represents real-world cases
of control logic attacks which target specific PLC types (Siemens S7-300) and
its engineering software (Siemens SIMATIC STEP 7). Stuxnet sabotaged Iran’s
nuclear facilities by infecting engineering software® and then injecting malicious
control logic to target PLCs using the infected engineering software.

Senthivel et al. [24, 23] presents three control logic injection attack scenarios
referred to as denial of engineering operations (DEQO) attacks where an attacker
can interfere with the normal engineering operation of downloading/uploading
of PLC control logic. In DEO I, an attacker in a man-in-the-middle (MITM)
position between a target PLC and its engineering software injects malicious
control logic to the PLC and replaces it with normal (original) control logic to
deceive the engineering software when uploading operation is requested. DEO
IT is similar to DEO I except that it uploads malformed control logic instead of
the original control logic to crash the engineering software. DEO III does not
require MITM positioning, in which the attacker simply injects specially crafted
malformed control logic to the target PLC. The malicious control logic is crafted
in a way that it can be run in the PLC successfully, but the engineering software
cannot decompile the control logic.

Network Intrusion Detection for PLCs. Digital Bond’s Snort rules [25]
represent a classic approach of NIDS for ICS. Their primary purpose is to detect
violation of protocol specification or unauthorized usage of the protocol’s func-
tion code (e.g. write request, cold restart, and disable unsolicited responses).
There are also rules to detect control logic downloading to a PLC. However,
these rules only inspect the PLC protocol header, allowing easy evasion by ma-
nipulating the header value as described in [27].

5 We extract features based on the properties of control logic code and decide code
packets as malicious in our evaluation scenario

6 Stuxnet replaces original s7otbxdx.dll of STEP 7 with its own version to intercept
communication between STEP 7 and S7-300 PL.C

20 Yoo et al.

Hadiosmanovic et al. [15] present a semantic-oriented NIDS to detect ab-
normal behavior of a physical process. They infer PL.C variable types based on
the degree of variability: control variables appear constant, reporting and state
variables can be mapped to a discrete set of values, and measurement variables
are usually continuously changing. They build behavioral models for each vari-
able to detect a significant deviation between the model and observed series of
data. They apply autoregressive modeling to model measurement variables (high
variability) and derive a set of expected values (as a white-list) for other types
of variables (medium or low variability). Since their approach focuses on data
instead of code, it can only detect post-attack effects after the attacker’s con-
trol logic code is injected into the target PLC, which may reflected in the data
blocks.

Deep Packet Inspection. PAYL [2] is a payload anomaly detection system
based on a l-gram analysis. For each packet payload, it counts the relative
frequency of each 1-gram, thereby each packet payload is embedded in a 256-
dimensional feature space. Based on this, it generates payload models per host,
flow direction (inbound/outbound), service port, and payload length, which are
represented by mean and standard deviation of each feature (0 ~ 255). Then,
it uses Mahalanobis distance in the detection phase to measure the distance be-
tween payload under test and corresponding payload model. However, as pointed
out in [5], it can be evaded by mimicry attacks since its analyzed data unit is
only 1 byte (1-gram).

Anagram [4] uses higher-order n-grams (n>1) to be resistant to against
mimicry attacks. The payload modeling technique used in PAYL is not suit-
able for higher-order n-grams because the feature space grows exponentially as
n increases (256™). Therefore, they utilize bloom filters to extract n-gram fea-
tures, as we also did in this paper. They record each n-gram of the payload in the
training dataset using bloom filters. Then, in the detection phase, a payload is
scored by counting the number of n-grams which are not a member of the bloom
filter. However, this technique alone is not suitable when evasion attacks are
involved, as demonstrated in [27]. For example, in the Fragmentation and Noise
Padding attack, attacker’s code fragment in each packet can be very small (even
one or two bytes) to which a large amount of non-code padding is appended,
making it difficult for packet-basis DPI to detect the attack packets.

8 Conclusion

In this paper, we introduced a novel deep packet inspection (DPI) technique,
Shade, based on shadow memory to detect control logic in ICS network traffic
against the evasion attacks presented in recent literature. As a part of developing
the proposed DPI technique, we analyzed five different types of features (42
unique features overall) at different semantic levels including decompilation, rung
and opcode identification, n-gram, and entropy. We implemented and evaluated
our approach on real-world PLCs from two different vendors. Our evaluation
results show that the evasion attacks can subvert a traditional packet-basis DPI
while Shade can detect the attack instances with nearly 100% accuracy at a

Overshadow PLC to Detect Remote Control-Logic Injection Attacks 21

0% false positive rate. We also show that the performance overhead of shadow
memory is only about 2% when using an optimal scan boundary parameter.

References

(1]
(2]
(3]
(4]

(5]

(6]
[7]
(8]
(9]
(10]
(11]

(12]

(13]
[14]

(15]

[16]

(17]
(18]

(19]

[20]

[21]

[22]
(23]

[24]

(25]

[26]

(27]

(28]

Toth, Thomas and Kruegel, Christopher: Accurate buffer overflow detection via abstract pay-
load execution. pp. 274-291 (2002)

Wang, Ke and Stolfo, Salvatore J: Anomalous payload-based network intrusion detection. vol.
3224. Springer (2004)

Chinchani, Ramkumar and Van Den Berg, Eric: A fast static analysis approach to detect exploit
code inside network flows. vol. pp., 284-308. Springer (2005)

Wang, Ke and Parekh, Janak J. and Stolfo, Salvatore J.: Anagram: A content anomaly detector
resistant to mimicry attack. In: Proceeding of the 9th International Conference on Recent
Advances in Intrusion Detection (RAID) (2006)

Fogla, Prahlad and Sharif, Monirul and Perdisci, Roberto and Kolesnikov, Oleg and Lee, Wenke:
Polymorphic blending attacks. In: Proceedings of the 15th Conference on USENIX Security
Symposium (2006)

Nethercote, Nicholas and Seward, Julian: Valgrind: A framework for heavyweight dynamic bi-
nary instrumentation. pp. 89-100 (2007)

I. N. Fovino and A. Carcano and T. D. L. Murel and A. Trombetta and M. Masera: Mod-
bus/dnp3 state-based intrusion detection system. pp. 729-736 (2010)

Falliere, Nicolas and Murchu, Liam O and Chien, Eric: W32. stuxnet dossier. White paper,
Symantec Corp., Security Response 5(6), 29 (2011)

Serebryany, Konstantin and Bruening, Derek and Potapenko, Alexander and Vyukov, Dmitry:
Addresssanitizer: A fast address sanity checker. pp. 2828 (2012)

Irfan Ahmed and Sebastian Obermeier and Martin Naedele and Golden G. Richard III: SCADA
systems: Challenges for forensic investigators. Computer 45(12), 44-51 (2012)

IEC 61131-3 Ed. 3.0 b:2013, Programmable controllers - Part 3: Programming languages. Stan-
dard, International Electrotechnical Commission (2013)

IEC 61850-5 Ed. 2.0:2013, Communication Networks and Systems for Power Utility Automation
- Part 5: Communication requirements for functions and device models. Standard, International
Electrotechnical Commission (2013)

Lee, Robert M and Assante, Michael J and Conway, Tim: German steel mill cyber attack. Tech.
rep., SANS (2014)

ICS Focused Malware. https://ics-cert.us-cert.gov/advisories/ICSA-14-178-01 (2014), [Online;
accessed 03-June-2018]

Hadziosmanovié¢, Dina and Sommer, Robin and Zambon, Emmanuele and Hartel, Pieter H.:
Through the eye of the plc: Semantic security monitoring for industrial processes. In: Proceed-
ings of the 30th Annual Computer Security Applications Conference (ACSAC) (2014)
McLaughlin, Stephen E and Zonouz, Saman A and Pohly, Devin J and McDaniel, Patrick D:
A trusted safety verifier for process controller code. In: Proceeding of the 21st Network and
Distributed System Security Symposium (NDSS) (2014)

Cyber-Attack Against Ukrainian Critical Infrastructure. https://ics-cert.us-cert.gov/alerts/IR-
ALERT-H-16-056-01 (2016), [Online; accessed 03-June-2018]

ICS-CERT Annual Vulnerability Coordination Report. Report, National Cybersecurity and
Communications Integration Center (2016)

Ahmed, Irfan and Roussev, Vassil and Johnson, William and Senthivel, Saranyan and Sud-
hakaran, Sneha: A scada system testbed for cybersecurity and forensic research and pedagogy.
In: Proceedings of the 2nd Annual Industrial Control System Security Workshop (ICSS) (2016)
CRASHOVERRIDE Malware. https://ics-cert.us-cert.gov/alerts /ICS-ALERT-17-206-01
(2017), [Online; accessed 03-June-2018]

Cinelli, Mattia and Sun, Yuxin and Best, Katharine and Heather, James M and Reich-Zeliger,
Shlomit and Shifrut, Eric and Friedman, Nir and Shawe-Taylor, John and Chain, Benny: Feature
selection using a one dimensional nalve bayes classifier increases the accuracy of support vector
machine classification of cdr3 repertoires. Bioinformatics 33(7), 951-955 (2017)

Irfan Ahmed and Sebastian Obermeier and Sneha Sudhakaran and Vassil Roussev: Pro-
grammable logic controller forensics. IEEE Security Privacy 15(6), 18-24 (November 2017)
Senthivel, Saranyan and Ahmed, Irfan and Roussev, Vassil: Scada network forensics of the pccc
protocol. Digital Investigation 22, S57-S65 (2017)

Senthivel, Saranyan and Dhungana, Shrey and Yoo, Hyunguk and Ahmed, Irfan and Roussev,
Vassil: Denial of engineering operations attacks in industrial control systems. In: Proceeding of
the 8th ACM Conference on Data and Application Security and Privacy (CODASPY) (2018)
Digital Bond’s IDS/IPS rules for ICS. https://github.com/digitalbond/Quickdraw-Snort
(2018), [Online; accessed 19-July-2018]

Sushma Kalle, Nehal Ameen, Hyunguk Yoo, and Irfan Ahmed: Clik on plcs! attacking control
logic with decompilation and virtual plc. In: Proceeding of the 2019 NDSS Workshop on Binary
Analysis Research (BAR) (2019)

Hyunguk Yoo and Irfan Ahmed: Control logic injection attacks on industrial control systems.
In: 34th IFIP International Conference on Information Security and Privacy Protection (2019)
Tofino Xenon Security Appliance. https://www.tofinosecurity.com/products/tofino-xenon-
security-appliance (2019), [Online; accessed 17-April-2019]

