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In this work, we describe our experiences in developing cloud forensics tools and use them
to support three main points:

First, we make the argument that cloud forensics is a qualitatively different problem. In the
context of SaaS, it is incompatible with long-established acquisition and analysis tech-
niques, and requires a new approach and forensic toolset. We show that client-side
techniques, which are an extension of methods used over the last three decades, have

Iggg‘:ﬂogﬁ;nsics inherent limitations that can only be overcome by working directly with the interfaces
Saas provided by cloud service providers.

Second, we present our results in building forensic tools in the form of three case studies:
kumodd—a tool for cloud drive acquisition, kumodocs—a tool for Google Docs acquisition
kumodd and analysis, and kumo fs—a tool for remote preview and screening of cloud drive data. We
kumodocs show that these tools, which work with the public and private APIs of the respective
kumofs services, provide new capabilities that cannot be achieved by examining client-side
Future forensics artifacts.
Finally, we use current IT trends, and our lessons learned, to outline the emerging new
forensic landscape, and the most likely course of tool development over the next five years.
© 2016 Elsevier Ltd. All rights reserved.

Google Docs format
Cloud-native artifacts

Introduction

Cloud computing is the emerging primary model for
delivering information technology (IT) services to Internet-
connected devices. It abstracts away the physical compute
and communication infrastructure, and allows customers
to rent, instead of own and maintain, as much compute
capacity as needed. As per NIST's definition (Mell and
Grance, 2011), there are five essential characteristics—on-
demand self service, broad network access, resource pooling,
rapid elasticity, and measured service—that distinguish the
cloud service model from previous ones. The cloud IT
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service model, although enabled by a number of techno-
logical developments, is primarily a business concept,
which changes how businesses use and interact with IT.
Importantly, it also changes how software is developed,
maintained, and delivered to its customers. The traditional
business model of the software industry has been software
as a product (SaaP); that is, software is acquired like any
physical product and, once the sale is complete, the owner
can use it as they see fit for an unlimited period of time. The
alternative—software as a service (SaaS)—is a subscription-
based model, and was originally offered by Application
Service Providers (ASPs) in the 1990s. Conceptually, the
move from SaaP to SaaS shifts the responsibility for oper-
ating the software and its environment from the customer
to the provider. Technologically, such a shift was enabled by
the acceptance of the Internet as a universal means of
communications (and the resulting rapid growth in
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network capacities), and was facilitated by the emergence
of the web browser as a standardized client user interface
(UI) platform. The modern version of SaaS is hosted in the
public cloud infrastructure, which enabled universal and
scalable SaaS deployment.

Forensics and the cloud. The traditional analytical model
of digital forensics has been client-centric; the investigator
works with physical evidence carriers, such as storage
media or integrated compute devices (e.g., smartphones).
On the client (or standalone) device it is easy to identify
where the computations are performed and where the
results/traces are stored. Therefore, research has focused on
discovering and acquiring every little piece of log and
timestamp information, and extracting every last bit of
discarded data that applications and the OS may have left
behind.

The introduction of Gmail in 2004—the first web app in
mass use—demonstrated that all the technological pre-
requisites for mass, web-based SaaS deployments have
been met. In parallel, the introduction of the first public
cloud services by Amazon in 2006 enabled any vendor to
rent scalable, server-side infrastructure and become a SaaS
provider. A decade later, the transition to SaaS is moving at
full speed, and the need to understand it forensically is
becoming ever more critical.

NIST has led a systematic effort (NIST, 2014) to catalogue
the various forensic challenges posed by cloud computing;
it is an extensive top-down analysis that enumerates 65
distinct problems. Such results provide an important con-
ceptual framework for pinpointing the most critical issues
relevant to the field.

There is also the need for a complementary bottom-up
synthesis effort that starts from solutions to specific cases,
and becomes more general over time. Such work is exper-
imental at heart, and allows us to both build useful tools
and practices, and to gain insight into a new field. The
accumulation of small, incremental successes often ends up
solving problems that, at the outset, seem daunting and
intractable.

Our primary focus here is on SaaS forensics as it has the
fastest growth rate, and is projected to become the most
common type of service (Section Future outlook); it is also
the least accessible to legacy forensic tools. In particular,
Saas breaks the underlying assumption of the client-centric
world that most (persistent) data is local; in a web appli-
cation (the most common SaaS implementation) both code
and data are delivered over the network on demand, and
become moving forensic targets. Local data becomes
ephemeral and the local disk is merely a cache—not the
master repository it used to be. Physical
acquisition, considered by many the foundation of sound
forensic practice, is often completely impractical; worse, it
can be ill-defined. For example, what should the “physical”
image of a cloud drive—the analog of a local disk drive—look
like?

It is important to come to terms with the fact that this
technological shift as a major development for forensics. It
renders much of our existing toolbox useless, and requires
that we rethink and reengineer the way we do digital fo-
rensics from the ground up. In other words, this is a qual-
itatively new challenge for forensics; unlike earlier

technology developments (such as the emergence of mo-
bile devices) it cannot be addressed by relatively minor
adjustments to tools and practices.

Starting with this understanding, we built several
experimental tools to help us better understand the chal-
lenge, and the potential solution approach. Our main focus
has been on cloud drive services, such as Dropbox and
Google Drive, as these have been among the most popular
ones both with consumers and with enterprises. (We avoid
the term cloud storage as it is broader and implies the in-
clusion of services like Amazon's S3.) Cloud drives provide a
conceptually similar interface to the local filesystem, which
is ideal for drawing comparisons with filesystem forensics.

One important assumption in our development process
has been that our tools have front door access to the drive
account's content. This is done for several reasons, but the
main one is the desire to focus on the technical aspects of
what is possible under that assumption. The history of fo-
rensics shows us that the legal system will build a proce-
dural framework and requirements around what is feasible
technically (and looks reasonable to a judge). We expect
that the long-term solution rests with having legally
sanctioned front door access to the data. (This does not
preclude other means of acquiring credentials, but we
consider it a separate, out-of-scope problem.)

Tool development case studies. Our first effort was to
build a (cloud) drive acquisition tool, kumodd,' which uses
the service provider's API to perform a complete acquisi-
tion of a drive's content. It supports four major services and
addresses two problems we identified with client-based
acquisition—partial data replication on the client and revi-
sion retrieval. It partially addressed a third issue, the
acquisition of cloud-native artifacts, such as Google Docs,
which do not have an explicit file representation, by
acquiring snapshots in standard formats, like PDF.

Our second tool, kumodocs, was specifically developed
to work with Google Docs, which we use as a case study on
how web apps store and work with such artifacts. We were
able to reverse engineer the internal changelog data
structure, which stores the complete editing history of the
document, to the point where we can independently store
and interpret it to a meaningful degree.

The third tool, kumofs, focuses on bridging the se-
mantic gap between cloud artifacts and legacy file-based
tools. This is accomplished by providing a filesystem
interface to the cloud drive; that is, we implement a FUSE
filesystem to remotely mount the drive. This makes it
available for exploration, triage, and selective acquisition
using standard command-line tools (like 1s and cp). While
the remote mount concept is old, we introduce the idea of
virtual files and folders to represent aspects of the drive,
such as file revisions and format conversions, that do not
have direct counterparts on the local filesystem.

We also allow for time travel—the ability to rewind the
state of the drive as of a particular time in the past, and
(time) diff—the ability to identify all recorded activity be-
tween two date/time points. Finally, we implemented a

1 The tool names are derived from the Japanese word for cloud kumo
().
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query interface, which allows an investigator to filter the
drive data based on the rich metadata provided by the
services (over 100 attributes for Google Drive) and show the
results as a virtual folder. In effect, we bridged the semantic
gap between the POSIX and drive services without losing
information in the process.

Put together, we believe the three tools form an early
version of a cloud-focused suite and the work has provided
us with insights, which are useful to cloud forensics
research and practice.

The flow of the remainder of the discussion is as follows:
Section Background provides some basic background on
cloud terminology; Section What makes cloud forensics
different? outlines the new environment that forensic an-
alysts face; Sections Case study: cloud drive acquisition
(kumodd) through Summary and lessons learned describe
the three tools outlined above—kumodd, kumodocs, and
kumofs—as well as a summary of our experiences on the
process. Finally, we discuss our outlook on the future of
cloud forensics (Section Future outlook) and conclude our
discussion.

Background

Cloud computing services are commonly classified into
one of three canonical models—software as a service (SaaS),
platform as a service (PaaS), and infrastructure as a service
(IaaS)—and we use this split as a starting point for our
discussion. This classification, although widely accepted, is
somewhat simplistic. In actual deployments, the distinc-
tions are often less clear cut, and most IT cloud solutions
(and potential investigative targets) often incorporate ele-
ments of all of these.

As illustrated on Fig. 1, it is useful to break down cloud
computing environments into a stack of layers (from lower
to higher): hardware, such as storage, and networking;
virtualization, consisting of hypervisor allowing to install
virtual machines; operating system, installed on each virtual
machine; middleware and runtime environment; and
application and data.

In a private (cloud) deployment, the entire stack is
hosted by the owner and the overall forensic picture is very
similar to the case of a non-cloud IT target. Data ownership
is clear as is the legal and procedural path to obtain it;
indeed, the very use of the term cloud is not particularly
significant to a forensic inquiry. In a public deployment, the
SaaS/PaaS/laaS classification becomes consequential as it
dictates the ownership of data and service responsibilities.

Fig. 1 shows the typical ownership of layers by customer
and service providers on different service models. In hybrid
deployments, layer ownership can be split between the
customer and the provider and/or across multiple pro-
viders. Further, it can change over time as, for example, the
customer may handle the base load on owned infrastruc-
ture, but burst to the public cloud to handle peak demand,
or system failures.

Software as a service (SaaS)

In this model, cloud service providers own all the layers
including application layer that runs the software offered
as a service to customers. In other words, customer has only
indirect and incomplete control (if any) over the underlying
operating infrastructure and application (in the form of
policies). However, since cloud service provider (CSP)
manages the infrastructure (including the application), the
maintenance cost on customer side is substantially
reduced. Google Gmail/Docs, Microsoft 365, Salesforce,
Citrix GoToMeeting, Cisco WebEx are popular examples of
SaaS, which run directly from web browser without
downloading and installing any software. Their desktop
and smartphone versions are also available to run on client
machine. The applications have varying, but limited, pres-
ence on the client machine making the client an incomplete
source of evidence; therefore, investigators would need
access to server-side logs to paint a complete picture. SaaS
applications log extensively, especially when it comes to
user-initiated events. For instance, Google Docs records
every insert, update, and delete operation of characters
performed by user along with the timestamps, which
makes it possible to identify specific changes made by
different users in a document (Somers, 2014). Clearly, such
information is a treasure trove for a forensic analyst, and is
a much more detailed and direct account of prior events
than what is typically recoverable from a client device.

Platform as a service (PaaS)

In PaaS service model, customers develop their appli-
cations using software components built into middleware.
Apprenda, Google App Engine, and Heroku are popular ex-
amples of PaaS, offering quick and cost-effective solution
for developing, testing, and deploying customer applica-
tions. In this case, the cloud infrastructure hosts customer-
developed applications and provides high-level services
that simplify the development process. PaaS provides full
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Fig. 1. Layers of cloud computing environment owned by customer and cloud service provider on three service models: [aaS, PaaS, and SaaS (public cloud).
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control to customers on the application layer including
interaction of applications with dependencies (such as
databases, storage etc.), and enabling customers to perform
extensive logging for forensics and security purposes.

Infrastructure as a service (laaS)

In IaaS, the CSP is the party managing the virtual ma-
chines; however, this is done in direct response to customer
requests. Customers then install operating system, and
applications within the machine without any interference
from the service providers. Amazon Web Service (AWS),
Microsoft Azure, Google Compute Engine (GCE) are popular
examples of laaS. IaaS provides capabilities to take snap-
shots of the disk and physical memory of virtual machines,
which has significant forensic value for quick acquisition of
disk and memory. Since virtual machines closely resemble
physical machines, the traditional forensic tools for data
acquisition and analysis can also be reused. Furthermore,
virtual machine introspection provided by hypervisors
enables cloud service providers to examine live memory
and disk data, and to perform instant data acquisition and
analysis. However, introspection is not available to cus-
tomers since the functionality is supported at the hyper-
visor level.

In summary, we can expect SaaS and PaaS investigations
to a have high dependency on logs since disk and memory
image acquisition is difficult to perform due to lack of
control at the middleware, operating system and lower
layers. In IaaS, the costumer has control on operating sys-
tem and upper layers, which makes it possible to acquire
disk and memory images, and perform traditional forensic
investigation.

What makes cloud forensics different?

Since our discussion is primarily focused on the tech-
nical aspects of analyzing cloud evidence (and not on legal
concerns), we employ a more technical definition of digital
forensics as a starting point (Roussev, 2009):

Digital forensics is the process of reconstructing the rele-
vant sequence of events that have led to the currently
observable state of a target IT system or (digital) artifacts.

The notion of relevance is inherently case-specific, and a
big part of forensic analyst's expertise is the ability to
identify case-relevant evidence. Frequently, a critical
component of the forensic analysis is the causal attribution
of event sequence to specific human actors of the system
(such as users and administrators). When used in legal
proceedings, the provenance, reliability, and integrity of
the data used as evidence is of primary importance.

In other words, we view all efforts to perform system,
or artifact, analysis after the fact as a form of forensics.
This includes common activities, such as incident
response and internal investigations, which almost never
result in any legal actions. On balance, only a tiny fraction
of forensic analyses make it to the courtroom as formal
evidence.

The benefit of taking a broader view of forensic
computing is that it helps us to identify closely related tools
and methods that can be adapted and incorporated into

forensics. In the context of cloud environments, it can help
us identify the most likely sources of evidence available
from a cloud service.

Forensics is a reactive technology

Digital forensics is fundamentally reactive in nature—we
cannot investigate systems and artifacts that do not exist;
we cannot have best practices before an experimental
period when different technical approaches are tried,
(court-)tested, and validated. This means that there is al-
ways a lag between the introduction of a piece of infor-
mation technology (IT) and the time an adequate
corresponding forensic capability is in place. The evolution
of the IT infrastructure is driven by economics and tech-
nology; forensics merely identifies and follows the digital
breadcrumbs left behind.

It follows that forensic research is also inherently reac-
tive and should focus primarily on understanding and
adapting to the predominant IT landscape, as opposed to
trying to shape it. It is our contention that the cloud pre-
sents a new type of challenge for digital forensics, and that
it requires a different set of acquisition and analysis tools.
From a timing perspective, we believe that the grace period
for introducing robust forensic capability for cloud envi-
ronments is quickly drawing to a close, and that the in-
adequacies of current tools are already being felt in the
field.

Ten years have elapsed since the introduction in 2006 of
public cloud services by Amazon under the Amazon Web
Services (AWS) brand. As of 2015, according to RightScale's
State of the Cloud Report (RightScale, 2015), cloud adoption
has become ubiquitous: 93% of businesses are at least
experimenting with cloud deployments, with 82% adopting
a hybrid strategy, which combines the use of multiple
providers (usually in a public-private configuration).
However, much of the technology transition is still ahead as
68% of enterprises have less than 20% of their application
portfolio running in a cloud setup. Similarly, Gartner pre-
dicts another 2—5 years will be needed before cloud
computing reaches the “plateau of productivity”, which
marks mass mainstream adoption and widespread pro-
ductivity gains.

Accordingly, cloud forensics is still in its infancy; despite
dozens of articles in the literature over the last five years,
there is a notable dearth of usable technical solutions on
the analysis of cloud evidence. More importantly, we are
still in a phase where the vast majority of the efforts are
focused on enumerating the problems that the cloud poses
to traditional forensic approachs, and looking for ways to
adapt (with minimal effort) existing techniques.

The emerging forensic landscape

Most cloud forensics discussions start with the false
premise that, unless the current model of digital forensic
processing is directly and faithfully reconstructed with
respect to the cloud—starting with physical acquisition—we
are bound to lose all notions of completeness and integrity.
The root of this misunderstanding is the use of traditional
desktop-centric computational model that emerged in the
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1990s as the point of reference; the same basic approach
has been incrementally adapted to work with successive
generations of ever more mobile client devices. Given a
successful track record of some three decades, it is entirely
natural to look for ways to extend the methodology at
minimum expense.

Our view is that cloud environments represent an
altogether new problem space for which existing forensic
approaches are woefully inadequate. For the rest of this
section, we outline the main features of this new landscape.

Server-side computations are the norm. The key attribute
of the client/standalone model is that practically all com-
putations take place on the device itself. Applications are
monolithic, self-contained pieces of code that have imme-
diate access to user input and consume it instantly with
(almost) no trace left behind. Since a big part of forensics is
attributing the observed state of the system to user-triggered
events, we (forensic researchers and tool developers) have
obsessively focused on two problems—discovering every
little piece of log/timestamp information, and extracting
every last bit of discarded data that applications and the OS
leave behind either for performance reasons, or just plain
sloppiness.

The SaaS cloud breaks this model completely: the
computation is split between the client and the server, with
the latter doing the heavy lifting and the former performing
predominantly user interaction functions. Consequently,
the primary historical record of the computation is on the
(cloud-hosted) server side, and not the client.

Logical acquisition is the norm. Our existing toolset is
almost exclusively built to feast upon the leftovers of
computations; this is becoming ever more challenging
even in traditional (non-cloud) cases. For example, file
carving of acquired media (Richard and Roussev, 2005) only
exists because it is highly inefficient for the operating
system to sanitize the media. However, for SSD devices, the
opposite is true—they need to be prepared before reuse; the
result—deleted data gets sanitized and there is practically
no data left to carve and reconstruct (King and Vidas, 2011).

The very notion of low-level physical acquisition is
reaching its expiration date even from a purely techno-
logical perspective—the current generation of high-
capacity HDD (8 TB+) (Seagate) use a track shingling
technique (Seagate) and have their very own ARM-based
processor. The latter is tasked with identifying hot and
cold data and choosing appropriate physical representation
for it. The HDD device exposes an object store interface (not
unlike key-value databases) that will effectively make
physical acquisition, in a traditional sense, impossible.
Legacy block level access will still be supported but the
block identifiers and physical layout are no longer coupled
as they were in prior generations of devices. By extension,
the feasibility of most current data recovery efforts, such as
file carving, will rapidly diminish.

Mass hardware disk encryption is another development
worth mentioning, as it is becoming increasingly necessary
and routine in IT procedures. This is driven both by the fact
that there is no observable performance penalty, and the
need to effectively sanitize ever larger and slower HDDs.
The only practical solution to the latter is to use crypto-
graphic erase (Kissel et al.)—always encrypt the data and

dispose of the key when the disk needs to be reclaimed;
practically all modern drives support this (e.g. Seagate).

In sum, the whole concept of acquiring a physical image
of the storage medium is increasingly technically infeasible
and is progressively less relevant as interpreting the
physical image requires understanding the (proprietary)
internals of the device's data structures and algorithms. The
inevitable conclusion is that forensic tools will have to
increasingly rely on the logical view of the data presented
by the device.

Cloud storage is the norm. Logical evidence acquisition
and processing will also be the norm in most cloud in-
vestigations, and it will be performed at an even higher
level of abstraction via software-defined interfaces.
Conceptually, the main difference between cloud
computing and client-side computing is that most of the
computation and, more importantly, the application logic
executes on the server with the client becoming mostly a
remote terminal for collecting user input (and environment
information) and for displaying the results of the
computation.

Logging is the default. Another consequential trend is the
way cloud-based software is developed and organized.
Instead of one monolithic piece of code, the application
logic is almost always decomposed into several layers and
modules that interact with each other over well-defined
service interfaces. Once the software components and
their communication are formalized, it becomes quite easy
to organize extensive logging of all aspects of the system.
Indeed, it becomes necessary to have this information just
to be able to debug, test, and monitor cloud applications
and services. Eventually, this will end up helping forensics
tremendously as important stages of computation are
routinely logged, with user input being both the single
most important source of events and the least demanding
to store and process.

It is a multi-version world. As an extension of the prior
point, by default, most user artifacts have numerous his-
torical versions. In Section Case study: Google Docs analysis
(kumodocs), we will discuss a real-world illustration of this
point. In contrast, our legacy acquisition, analysis, and
visualization tools are designed around the concept of a
single master version of an artifact. For example, there is no
easy way to represent artifacts with multiple versions in
current file systems; the direct mapping of each version to a
named file creates a usability nightmare as it dramatically
exacerbates information overload problems. In Section
Case study: filesystem for cloud data (kumofs), we propose
a couple of abstractions—time travel and time diff—that can
alleviate these problems, but there is a clear need for much
more research in this area.

Case study: cloud drive acquisition (kumodd)

In this section, we provide an extended summary of our
experiences in building an API-based tool, kumodd, for
cloud drive acquisition; the detailed appears in Roussev
et al. (2016).

Historically, the notion of a “cloud drive” is rooted in
(LAN) network drives/shares, which have been around ever
since they were introduced as part of DECnet's
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implementation (DEC, 1980) in 1976. In the 1980s,
filesystem-level network sharing was popularized by Sun
Microsystems' Network File System, which later became a
standard (RFC 1813). In the 1990s, the idea was extended to
the WAN, and became commonly known as an Internet
drive, which closely resembles our current concept of a
cloud drive.

The main difference is that of scale—today, there are
many more providers and the WAN infrastructure has
much higher bandwidth capacity, which makes real-time
file synchronization much more practical. Most of these
services are built on top of third party laaS offerings (such
as AWS). These products have clear potential as investiga-
tive targets, and have attracted the attention of forensic
researchers.

Related work: client-side analysis

The overwhelming majority of prior efforts have
focused on obtaining everything from the client by
employing black box differential analysis to identify arti-
facts stored by the agent process on the client.

Chung et al. analyzed four cloud storage services
(Amazon S3, Google Docs, Dropbox, and Evernote) in search
of traces left by them on the client system that can be used
in criminal cases. They reported that the analyzed services
may create different artifacts depending on specific fea-
tures of the services, and proposed a process model for
forensic investigation of cloud storage services which is
based in the collection and analysis of artifacts of the
analyzed cloud storage services from client systems. The
procedure includes gathering volatile data from a Mac or
Windows system (if available), and then retrieving data
from the Internet history, log files, and directories. In mo-
bile devices they rooted an Android phone to gather data
and for iPhone they used iTunes information like backup
iTunes files. The objective was to check for traces of a cloud
storage service exist in the collected data.

Subsequent work by Hale (2013), analyzes the Amazon
Cloud Drive and discusses the digital artifacts left behind
after an Amazon Cloud Drive account has been accessed or
manipulated from a computer. There are two possibilities
to manipulate an Amazon Cloud Drive Account: one is via
the web application accessible using a web browser and the
other is a client application provided by Amazon and can be
installed in the system. After analyzing the two methods he
found artifacts of the interface on web browser history, and
cache files. He also found application artifacts in the Win-
dows registry, application installation files on default
location, and an SQLite database used to keep track of
pending upload/download tasks.

Quick and Choo (2013) analyzed the artifacts left behind
after a Dropbox account has been accessed, or manipulated.
Using hash analysis and keyword searches they try to
determine if the client software provided by Dropbox has
been used. This involves extracting the account username
from browser history (Mozilla Firefox, Google Chrome, and
Microsoft Internet Explorer), and the use of the Dropbox
through several avenues such as directory listings, prefetch
files, link files, thumbnails, registry, browser history, and
memory captures. In follow-up work, Quick and Choo

(2014) use a similar conceptual approach to analyze the
client-side operation and artifacts of Google Drive and
provide a starting point for investigators.

Martini and Choo (2013) have researched the operation
of ownCloud, which is a self-hosted file synchronization and
sharing solution. As such, it occupies a slightly different
niche as it is much more likely for the client and server
sides to be under the control of the same person/organi-
zation. They were able to recover artifacts including sync
and file management metadata (logging, database and
configuration data), cached files describing the files the
user has stored on the client device and uploaded to the
cloud environment or vise versa, and browser artifacts.

Other related work

Huber et al. (2011) focus on acquiring and analyzing the
social graph of Facebook users by employing the official
Graph API. The work is presented as an efficient alternative
to web crawling to collect the public profile data of targeted
users and their social network. To the extent that the
approach uses a service API, it bears resemblance to our
own approach; however, the targeted services are quite
different from each other.

A number of research efforts, such as Drago et al. (2012),
have focused on characterizing the network behavior and
performance of cloud drive services. Although the analysis
is broadly relevant, such work does not have direct forensic
applications.

In sum, the only techniques that offer usable cloud drive
data acquisition are client-based.

The limits of client-side analysis

The main shortcoming of client-side analysis is that it
does not target the authoritative source of the data—the
cloud (service). Instead, it focuses on the client-side cache
as illustrated by Fig. 2, which sketches the typical archi-
tecture of a SaaS cloud drive.

Partial replication. The most obvious problem is that
there is no guarantee that any of the clients attached to an
account will have a complete copy of the (cloud) drive's
content. Google Drive currently offers up to 30 TB of online
storage (at $10/TB per month), whereas Amazon offers
unlimited storage at $60/year. As data continues to accu-
mulate online, it quickly becomes impractical to keep full
replicas on all devices; indeed, with current trends, it is
likely that most users will have no device with a complete
copy of the data. A sound forensic solution requires direct
access to the cloud drive's metadata to ascertain its

Client device

Service API

Service agent

Private protocol &
data

Client cache Cloud service data

Fig. 2. SaaS cloud drive service architectural diagram.
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contents; the alternative, relying on the client cache, runs
the risk of incomplete acquisition.

Revisions. Most drive services provide some form of
revision history; the lookback period varies, but it is a
feature users have come to expect. This is a new source of
valuable forensic information that has few analogs in
traditional forensic targets and investigators are not yet
used to looking for it. Revisions reside in the cloud and
clients rarely have anything but the most recent version in
their cache; a client-side acquisition will clearly miss prior
revisions; it will not even be aware of them.

Cloud-native artifacts. Courtesy of the wholesale move-
ment to web applications, forensics needs to learn how to
deal with a new problem—digital artifacts that have no
serialized representation in the local filesystem. For
example, Google Docs documents are stored locally as a link
to the document, which can only be edited via a web app.
Acquiring an opaque link is not very helpful—it is the
content of the document that is of primary interest. Google
Docs provides the means to obtain a usable snapshot of the
web app artifact (PDF) but that can only be done via the
service's API.

The outlined limitations of the client-side approach are
inherent and cannot be remedied by a better implementa-
tion; therefore, we developed an approach that obtains the
data directly from the cloud service.

For the rest of this section, we show how the first two
concerns can be addressed by working with the public API
offered by the service. After that, we will focus on the third
problem, which requires the analysis of the private (un-
documented) API and data structures used (in our case
study) by Google Docs.

API-based acquisition

The public service API is the front door to obtaining a
forensically-accurate snapshot of the content of a cloud
drive, and should be adopted as a best practice. As per
Fig. 2, the client component of the cloud drive (which
manages the local cache) utilizes the exact same interface
to perform its operations. Thus, the service APl is the lowest
available level of abstraction and is the appropriate inter-
face for performing forensic acquisition. In most cases, file
metadata often includes cryptographic hashes of the con-
tent, which enables strong integrity guarantee during
acquisition.

The service API (and corresponding client SDKs for
different languages) are officially supported by the provider
and have well-defined semantics and detailed documen-
tation; this allows for formal and precise approach to
forensic tool development and testing. In contrast, black-
box reverse engineering can never achieve provable
perfection.

Conceptually, acquisition consists of three core pha-
ses—content discovery, target selection, and target acqui-
sition (Fig. 3). During content discovery, the acquisition tool
queries the target and obtains a list of artifacts (files) along
with their metadata. In a baseline implementation this can
be reduced to enumerating all available files; in a more
advanced one, the tool can take advantage of search capa-
bility provided by the API (e.g., Google Drive) and/or

perform hash-based filtering. During the selection process,
the list of targeted artifacts can be filtered down by auto-
mated means, or by involving the user. The result is a
(potentially prioritized) list of targets that is passed onto
the tool to acquire.

Traditional approaches largely short-circuit this process
by attempting to blindly acquire all available data. How-
ever, this “acquire-first-filter-later” approach is not sus-
tainable for cloud targets—the overall amount of data can
be enormous and the available bandwidth could be up to
two orders of magnitude lower than local storage.

The goal of our proof-of-concept implementation,
kumodd, is to be a minimalistic tool for research and
experimentation that can also provide a basic practical
solution for real cases; we have sought to make it as simple
as possible to integrate it with the existing toolset. Its basic
operation is to acquire (a subset of) the content of a cloud
drive and place it an appropriately structured local fil-
esystem tree.

Kumodd

Kumodd is split into several modules across three logical
layers: dispatcher, drivers, and user interface (Fig. 4). The
dispatcher (kumodd.py) is the central component which
receives parsed user requests, relays them to the appro-
priate driver, and sends back the result. The drivers one for
each service, implement the provider-specific protocol via
the web API. The tool provides two interfaces—a command-
line one (CLI) and a web-based GUI.

The general format of the kumodd commands is:

kumodd .py -s [service] [action] [filter]

The [service] parameter specifies the target service.
Currently, the supported options are gdrive, dropbox,
onedrive, and box, which correspond to Google Drive,
Dropbox, Microsoft OneDrive, and Box, respectively.

The [action] argument instructs kumodd on what to
do with the target drive: -1 list stored files (as a plain text
table); -d download files (subject to the [filter] specifi-
cation); and -csv <file> download the files specified by
the file (in CSV format). The -p <path> option can be used
to override the default, and explicitly specify the path to
which the files should be downloaded.

The [filter] parameter specifies the subset of files to
be listed/downloaded based on file type: al1l—all files
present; doc-all Microsoft Office/Open Office document
files (.doc/.docx/.odf); xls-spreadsheet files; ppt-
presentations files; text—text/source code; pdf—PDF files.
In addition, some general groups of files can also be spec-
ified: officedocs—all document, spreadsheet and presen-
tation files; image—all images; audio-all audio files; and
video-all video files.

User authentication. All four of the services use the
OAuth2 (http://oauth.net/2/) protocol to authenticate the
user and to authorize access to the account. When kumodd
is used for the first time to connect to a cloud service, the
respective driver initiates the authorization process which
requires the user to authenticate with the appropriate
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Fig. 3. Acquisition phases.
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Fig. 4. Kumodd architectural diagram.

credentials (username/password). The tool provides the
user with a URL that needs to be opened in a web browser,
where the standard authentication interface for the service
will request the relevant credentials.

Content discovery. The discovery is implemented by the
list (—1) command, which acquires the file metadata from
the drive. As with most web services, the response is in
JSON format; the amount of attribute information varies
widely based on the provider, and can be substantial
(Google Drive). Since it is impractical to show all of it, the
list command outputs an abbreviated version with the
most essential information-file name, size, etc.—formatted
as a plaint text table. The rest is logged as a CSV file in the
./localdata folder with the name of the account and
service. The stored output can be further processed either
interactively, by using a spreadsheet program (Fig. 5), or by
using Unix-style command line tools, thereby enabling
subsequent selective and/or prioritized acquisition.

Acquisition. The acquisition is performed by the down-
load (—d) command and can either be performed as a single
discovery-and-acquisition step, or it can be targeted by
providing a list of files (with -csv).

A list of successfully downloaded files is displayed with
information such as download date, application version,
username, file ID, remote path, download path, revisions,
and cryptographic hashes. This information is logged
locally, as is the original JSON metadata obtaines from the
service.

Revisions. By default, kumodd automatically enumerates
and downloads all the revisions for the files selected for
acquisition; the number of available revisions can be pre-
viewed as part of the file listing (Fig. 5, column D). During

download, the individual revisions' filenames are gener-
ated by prepending the revision timestamp to the base
filename and can be viewed with the regular file browser,
e.g.:

(2015-02-05T08:28:26.032Z) resume.docx 8.4kB
(2015-02-08T06:31:58.971Z) resume.docx 8.8kB

Cloud-native artifacts (Google Docs). One new challenge
presented by the cloud is the emergence of cloud-native
artifacts—data objects that have no serialized representa-
tion on the local storage, and cannot ever be acquired with
client-side methods. Google Docs is the primary service we
are concerned with in this work, however, the problem
readily generalizes to many, if not most, SaaS/web appli-
cations. One of the critical differences between native ap-
plications and web apps is that the code for the latter is
dynamically downloaded at run time and the persistent
state of the artifacts is stored back in the cloud. Thus, the
serialized form of the data (usually in JSON/XML) is an in-
ternal application protocol that is not readily renderable
with a standalone application.

In the case of Google Docs, the local Google Drive cache
contains only a link to the online location, which creates a
problem for forensics. Fortunately, the API offers the option
to produce a snapshot of the document/spreadsheet/pre-
sentation in several standard formats including text, PDF,
and MS Office.

At present, kumodd automatically downloads a PDF
snapshot of all Google Docs encountered during acquisi-
tion. Although this is clearly a better solution than merely
cloning the link from the cache, there is still a loss of
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Fig. 5. Example cloud drive metadata from Google Docs; CSV file (partial view). Column B contains the unique identifier for the file, D has the number of stored

revisions, and E provides a SHA1 hash of the content.
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Fig. 6. Chunked snapshot for a document containing the text “Test document” (shortened).

forensically important information as the internal artifact
representation contains the complete editing history of the
document.

Case study: Google Docs analysis (kumodocs)

The goal of this section is to summarize our experiences
in developing an analysis tool for Google Docs artifacts; the
detailed description is published in Roussev and McCulley
(2016). We use Google Docs to refer to the entire suite of
online office, productivity and collaboration tools offered
by Google. We use Documents, Sheets, Slides, etc., to refer to
specific individual applications in that suite.

Related work: DraftBack

The precursor to our work is DraftBack (draftback.com):
a browser extension created by the writer and programmer
James Somers, 2014, which can replay the complete history
of a Documents document. The primary intent of the code is
to give writers the ability to look over their own shoulder
and analyze how they write. Coincidentally, this is precisely
what a forensic investigator would like to be able to
do—rewind to any point in the life of a document, right to
the very beginning.

In addition to providing the in-browser playback (using
the Quill open source editor (Chen and Mulligan)) of all the
plaintext editing actions—either in fast-forward, or real-
time mode—DraftBack provides an analytical interface
which maps the time of editing sessions to locations in the
document.

This can be used to narrow down the scope of inquiry
for long-lived documents. Somers' work, although not
motivated by forensics, is among the first examples of SaaS
analysis that does not rely on trace data resident on the
client—all results are produced solely by (partially) reverse
engineering the web application's data protocol.

These observations served as a starting point of our own
work, which seeks to build a true forensic tool that un-
derstands the needs of the investigative process.

Documents

In 2010, Google unveiled a new version of Google Docs
(Google, 2010a), allowing for greater real-time online
collaboration. The introduced new Documents editor,
named kix, handles rendering elements like a traditional
word processor; this is a clear break from prior practices
where an editable HTML element was used. Kix was
“designed specifically for character-by-character real time
collaboration using operational transformation” (Google,
2010b). (Operational transformation is a concurrency man-
agement mechanism that eschewes preventive locking in
favor of reactive, on-the-fly resolution of conflicting user
actions (Ellis and Gibbs, 1989).)

Another important technical decision was to keep a
detailed log of document revisions that allows users to go
back to any previous version; this feature is available to any
collaborator with editing privileges.

Google's approach to storing the revisions is different
from most other solutions; instead of keeping a series of
snapshots, the complete log of editing actions (since the
creation of the document) is kept. When a specific
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version is needed, the log is replayed from the beginning
until the desired time; replaying the entire log yields the
current version. This design means that, in effect, there is
no delete operation that irrevocably destroys data, and
that has important forensic implications.

To support detailed revisions, as well as collaborative
editing, user actions are pushed to the server as often as
every 200 ms, depending on speed of input. In collabora-
tion mode, these fine-grained actions, primarily insertions
and deletions of text, are merged on the server end, and a
unified history of the document is recorded. The actions,
potentially transformed, are then pushed to the other cli-
ents to ensure consistent, up-to-date views of the
document.

The number of major revisions available via the public
API corresponds to the major revisions shown to user in the
history. Major style changes seem to prompt more of those
types of revisions; for example, our working document
where we kept track of our experiments has over 5100
incremental revisions but only six major one. However, the
test document we used for reverse engineering purposes
has 27 major revisions with less than 1000 incremental
ones. The passage of time since last edit appears to play a
role, but starting a new editing session does not seem to be
enough to trigger a new major revision.

The internal representation of the document, as deliv-
ered to the client, is in the form of a JSON object called
changelog. The structure is deeply nested but contains one
array per revision, with most elements of the array con-
taining JavaScript objects (key-value pairs). Each array ends
with identifying information for that revision as follows: an
epoch timestamp in Unix format, the Google ID of the
author, revision number, session ID, session revision
number, and the revision itself.

Each time the document is opened, a new session is
generated, and the number of revisions that occur within
that session are tracked. Some revisions, such as inserting
an object, appear as a single entry with multiple actions in
the form of a transaction. The latter contains a series of
nested dictionaries; the keys in the dictionary are abbre-
viated (2—4 characters), but not outright obfuscated.

The changelog contains a special chunked snapshot ob-
ject (Fig. 6), which contains all the information needed to
create the document as of the starting revision. The length
of the snapshot varies greatly depending on the number of
embedded kix objects and paragraphs; it has only two en-
tries (containing default text styles) for revisions starting at
1

For any revision with text in the document, the first
element of the snapshot consists of a plaintext string of all
text in the document, followed by default styles for title,
subtitle, and headings h1 through h6, language of the
document, and first paragraph index and paragraph styles.
The next several elements are all kix anchors for embedded
objects like comments or suggestions, followed by a listing
of each contiguous format area with the styles for those
sections that should be applied, as well as paragraphs and
associated IDs used to jump to those sections from a table
of contents.

Following the snapshot, there is an array for each
revision-log entries describing the incremental changes.

For example, in a document description from revision 200
to 300, there would be a snapshot of the state at revision
200, followed by 100 entries in the changelog describing
each individual change from 200 to 300; some of these
may be transactions with multiple simultaneous
modifications. The ability to choose the range of changes
to load, allows kix to balance the flexibility of allowing
users to go back in time, and the need to be efficient, and
not replay ancient document history needlessly.

The changelog for a specific version can be obtained
manually by using the development tools built into the
browser. After logging in and opening the document, the
list of network requests contains a load URL of the form:

https://docs.google.com/documents/d/<doc_id>/load?

<doc_id>, where doc_id is the unique document
identifier (Fig. 7).

To facilitate automated collection, we built a Python
download tool that uses the Google Drive API to acquire the
changelog for a given range of versions. It also parses the
JSON result and converts it into a flat CSV format that is
easier to process with existing tools. Each line contains a
timestamp, user id, revision number, session id, session
revision, action type, followed by a dictionary of key-value
pairs involved in any modifications. This format is closer to
that of traditional logs and is easier to examine manually,
and to process with standard command-line text manipu-
lation tools. The style modification are encoded in dictio-
naries so that they can be readily used (in Python, or
JavaScript) to replay the events in a different editor.

The first stage in this process is to obtain the plaintext
content of the documents, followed by the application of
the decoded formating styles, and the addition of
embedded objects (like images). Once the changelog is
acquired, obtaining the plaintext is relatively easy by
applying all string insert and delete operations, and
ignoring everything else.

Actions that manipulating page elements, such as a
table, equation, picture, etc., have a type of ae (add
element), de (delete element), or te (tether element); the
latter is associated with a kix anchor and kix id. Element
insertions are accompanied by a multiset of style adjust-
ments, containing large dictionaries of initialization values.
Objects like comments and suggestions only contained
anchor and id information in the changelog, and no actual
text content.

Picture element insertions contain source location
(URL), with uploaded files containing a local URL accessible
through HTML5's FileSystem APL? Inserting an image from
Google Drive produces a source URL in the changelog from
the googleusercontent.com domain (Google's CDN) that
remains accessible for some period of time. After a while
(next day) the URL started reporting an http permissions
error (403), stating client does not have permission. The
observed behavior was readily reproducible.

Upon further examination of the HTML elements in the
revision document, we established that they were refer-
encing a different CDN link, even immediately after

2 fAlesysten: https://docs.google.com/persistent/docs/documents/
<doc_id>/image/<image_id>.
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Fig. 7. Example load request and changelog response.

insertion. As expected, images inserted from URLs also had
a copy in the CDN given that the source might not be
available after insertion. One unexpected behavior was that
the CDN link continued to work for several days after the
image was deleted from the document. Further, the link
was apparently public accessing it did not require being
logged into a Google account, or any other form of
authentication.

By analyzing the network requests, we found that the
(internal) Documents API has a renderdata method. It is
used with a POST request with the same headers and query
strings as the 1oad method used to fetch the changelog:

https://docs.google.com/document/d/<doc_id>/render
data?id=<doc_id>

The renderdata request body contains, in effect, a bulk
data request in the form:

renderOps:{"r0": ["image",{"cosmoId":"1dv ... cRQ",
"container":"1Ss ... xps"}],

"r1": ["image",{"cosmoId":"1xv ... 3df",
"container":"1S8s ... xps"}],

The cosmo1d values observed correspond to the i_cid
attribute of embedded pictures in the changelog, and the
container is the document id. The renderdata response
contained a list of the CDN-hosted URLs that are world
readable.

To understand the behavior of CDN-stored images, we
embedded two freshly taken photos (never published on
the Internet) into a new document; one of the images was
embedded directly from the local file system, the other one
via Google Drive. After deleting both images in the docu-
ment, the CDN-hosted links continued to be available
(without authentication); this was tested via a script which
downloads the images every hour and those remained
available for the duration of the test (72 h).

In a related experiment, we embedded two different
pictures in a similar way in a new sheet. Then, we deleted
the entire document from Google Drive; the picture links
remained live for approximately another hour before dis-
appearing. Taken together, the experiments suggests that
an embedded image remains available from the CDN, as
long as at least one revision of a document references it;
once all references are deleted, the object is garbage

collected. Forensically, this is an interesting behavior that
can potentially uncover very old data, long considered
destroyed by its owners.

Access to embedded Google Drawings objects is a little
simpler-the changelog references them by a unique draw-
ing id. The drawing could then be accessed by a docs.
google.com URL,> which does require Google authentica-
tion and appropriate access permissions.

Case study: filesystem for cloud data (kumofs)

Motivation. The previous two studies focused on the
basic questions of cloud data acquisition and artifact
analysis. In the course of our work, we observed that
cloud data objects come with a much richer set of
metadata than files on the local filesystem. For example,
a Google Drive file can have over 100 attributes that can
both external (name, size, timestamps) and internal,
such as image size/resolution, GPS coordinates, camera
model, exposure information, and others. This creates a
clear opportunity to perform much more effective triage
and initial screening of the data before embarking on a
costly acquisition. Listing 1 provides an illustrative
sample (adopted from Google) of some of the extended
attributes available, in addition to standard attributes
like name, size, etc. It should be clear that some of
them, like md5Checksum, have readily identifiable
forensic use; others offer more subtle testimonials on
the behavior of users, and their relationship with other
users.

One (somewhat awkward) problem is that current tools
are not ready to ingest and process this bounty of addi-
tional information. In particular, they are used to extracting
internal metadata directly from the artifact, and are not
ready to process additional external attributes that are not
normally present in the filesystem. This underlines the
need to develop a new generation of cloud-aware tools. In
the mean time, we seek to provide a solution that allows us
to utilize existing file tools on data from cloud drive
services.

Listing 1. Extended Google Drive file attributes (sample)

3 https://docs.google.com/drawings/d/<drawing_id>/image?
w=<width>&h=<height>.
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"md5Checksum": string,
"description": string,
"mimeType": string,
"originalFilename": string,
"fileExtension": string,
"fullFileExtension": string,
"webViewLink": string,
"webContentLink": string,
"thumbnaillink": string,
"thumbnail": {

"image": bytes,

"mimeType": string

1,

"labels": {
"starred": boolean,
"trashed": boolean,
"restricted": boolean,
"viewed": boolean

1,

"modifiedByMeDate": datetime,
"lastViewedByMeDate": datetime,
"markedViewedByMeDate": datetime,
"sharedWithMeDate": datetime,
"sharingUser": {
"displayName": string,
"picture": {"url": string},
3,
"owners": [{
"displayName": string,
"picture": {"url": string},

.

"lastModifyingUserName":

"lastModifyingUser": {
"displayName": string,
"picture": {"url": string},

1,

"ownedByMe": boolean,

"editable": boolean,

string,

"shareable": boolean,
"copyable": boolean,
"shared": boolean,
"explicitlyTrashed": boolean,
"appDataContents": boolean,
"headRevisionId": string,
"imageMediaMetadata": {
"width": integer,
"height": integer,
"location": {
"latitude": double,
"longitude": double,
"altitude": double

"date": string,
"cameraMake": string,

Filesystem access. At first glance, it may appear that this
is a trivial problem-after all, cloud drives have clients that
can automatically sync local content with the service. In
other words, given credentials for the account, an investi-
gator could simply install the client, connect to the account,
and wait for the default synchronization mechanism to
download all the data, and then can apply the traditional
set of tools.

Unfortunately, this approach has a number of pain
points: a) it does not allow for metadata-based screening of
the data (e.g., by crypto hash); b) full synchronization could
take a very long time, and the investigator would have no
control over the order in which it is acquired; c) clients are
designed for two-way synchronization, which makes them
problematic from a forensic integrity standpoint.

We set out to design and implement a tool that ad-
dresses these concerns, and provides the following: a)
read-only, POSIX-based access to all files on the cloud
drive; b) means to examine the revision history of the files;
c) means to acquire snapshots of cloud-native artifacts; d)
query interface that allows metadata-based filtering of the
artifacts, and allows selective, incremental, and prioritized
acquisition of the drive content.

Design of kumo fs. The starting point of our design is the
choice of FUSE (Henk and Szeredi) as the implementation
platform. FUSE is a proxy kernel driver, which implements
the VFS interface and routes all POSIX system calls to a
program in user space. This greatly simplifies the devel-
opment process, and thousands of systems have been
implemented for a wide variety of purposes. In the context
of forensics, FUSE is used by mountewf (Metz) to provide
filesystem access to EWF files; also Richard et al. (2007) and
Dutch National Police Agency have proposed its use to
provide an efficient filesystem interface to carving results.

Kumofs consists of five functional components: com-
mand line module, filesystem module, authentication
module, cache manager, and query processor (Fig. 8). The
command line module, provides the interface to all func-
tions via the kumofs command. The filesystem module
keeps track of all available metadata and implements all
the POSIX calls; it implements multiple views of the arti-
facts by means of virtual files and folders (discussed below).
The authentication module manages the authentication
drivers for individual services, and maintains a local cash of
the credentials. The cache manager maintains a prioritized
queue of download requests, keeps a persistent log of all
completed operations, and handles file content requests.
The query processor provides the means to list, query, and
filter files based on all the metadata, and to create virtual
folders for the results.

Mount and unmount. To mount a cloud drive, we issue a
command of the form

kumofs mount [service] [account] [mount-dir]

where [service] is one of the supported services
(gdrive, dbox, box, onedrive), [account] is of the form
user@domain, and [mount-dir] is the mount point. For
example:

kumofs mount -gdrive joe@example.com gdrive/
joe

The first mount for a specific account triggers OAuth2
authentication (as with kumodd); after it is complete, the
credentials are cached persistently. Following the authen-
tication and app authorization, kumofs downloads all the
file metadata and concludes the process. At this point, the
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Fig. 8. kumofs architectural diagram.

user can navigate the files and folders using the mount
point. Unmounting an account is done with

kumofs umount [mount-dir]

File download. The download of a file can be accom-
plished in two ways-synchronously, or asynchronously. The
former blocks the requestor until the download is com-
plete, whereas the latter adds a request to the download
queue maintained by the cache manager, and returns
immediately.

Synchronous download is triggered by the fopen system
call invoked, for example, by standard commands like cp,
and cat. File contents is always served from the local
cache, so the download cost is paid only once regardless of
how it is initiated. The cache persists across sessions, with
its contents verified during the mount operation (using the
crypto hashes in the metadata).

Asynchronous download is initiated with the get and
dl (download) commands:

kumofs [get|dl] [files]

where standard globbing patterns can be used to specify
the target [files].The only difference between the get and
download commands is that the former places the request
at the head of the queue, whereas the latter appends it to
the end. The kumofs gstatus command lists the state of
all currently active requests; kumofs glog shows the log of
completed requests and their outcome (success/failure).

At any point, the analyst can choose to simply acquire
the rest of the files (subject to a configuration file) with
kumofs dd.

Virtual files & folders. Recall that a Google Drive account
may contain Google Docs artifacts that have no local rep-
resentation, although the API provides the means to export
snapshots in different formats. By default, kumofs provides
virtual file entries for the different export formats. For
example, for a Google document called summary, the sys-
tem will create file entries such as:

summary docx
summary
summary

summary

.gdoc.
.gdoc.odt
.gdoc.txt
.gdoc.pdf

It is convenient to extend the idea of virtual files to
include virtual folders; it allows us to elegantly handle

revisions while maintaining the filesystem abstraction. For
every versioned file, such as summary.txt, we create a folder
called summary.txt.REVS in which we create a file entry for
each available version: 000.summary.txt, 001.summary.txt,
..., NNN.summary.txt with the appropriate size and time-
stamps. This makes it easy to run, for example, file pro-
cessing tools on successive versions. To avoid unnecessary
clutter, we allow the analyst to turn the revision folders on/
off with kumofs revs [on|off].

We provide two views of deleted files; one is through
the .DELETED folder in the root directory and contains the
full directory structure of the removed files (a la recycling
bin). The second one is an optional per-folder view that can
be turned on/off with kumofs del [on|of£]. While on, for
every folder containing deleted files, it creates a .DELETED
subfolder which enumerates them.

Time travel. One aspect of cloud forensics that analysts
will have to adjust to is the abundance of time and ver-
sioning data. On a traditional filesystem, there is a single
instance of the file and versioning is entirely up to the user
(or some piece of middleware). As a consequence, there is
no explicit representation of the system in a prior state
(e.g., as of 23 days ago) that can be examined with standard
tools, like a file browser.

Kumofs provides the time travel (tt) command, which
sets the state of the mounted cloud drive as of a particular
date/time, allowing the analyst to see the actual state of the
system as of that time.* For example:

kumofs tt "Aug-31-2011 5:00p"

Going a step further, it is possible to save such views by
creating virtual folders for them:

kumofs tt
kumofs tt

"Aug-31-2011 5:00p"
"Sep-30-2011 5:00p"

state/Aug-31
state/Sep-30

Given two (or more) snapshots, an investigator can
apply a host of differential analysis techniques. We directly
support this with the time diff command which creates a
view of the filesystem (in a virtual folder) which contains
all files that have been created, modified, or deleted during
the period. For example, the following would yield what
happened during the month of September 2011:

4 This is based on the available version history and may not be
complete.
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kumofs diff "Aug-31-2011 5:00p" "Sep-30-2011
5:00p" diff/Sep

Metadata queries. Recall that one of the problems of
remotely mounting a cloud drive is that access to much of
the metadata is lost. Therefore, kumofs provides a sup-
plementary means to query all of the metadata via the mg
command:

kumofs mq ’<filter>’ show ’<keys>’

The <filter> is a JSON boolean expression on the
attribute values, such as label.starred=="“True”,
which would select all files marked with a star by the user.
At present we support simple expressions, however, our
solution is based on jq,” which has a rich query language
for JSON data. With some parsing improvements we expect
to have the full range of expressions.

The show clause is for interactive display of metadata.
For example:

kumofs.py mq ’labels.starred=="True"’ show ’
id,title,labels’
Mounting on /tmp/mq with shadow /tmp/.27oml

1D607PsRDIQhgGaTn5jCes50qaeFPZVVbm0OgcnsQY9Ts
todo.txt

{
"restricted": "True",
"starred": "True",
"viewed": "True",
"hidden": "False",
"trashed": "False"

}

As shown in the listing, our current implementation
creates a temporary mount point, and places the results of
the query (the selected files) there. Based on the experi-
ence, we are modifying the command to allow user-
specified virtual folder to be created under the original
mount point; e.g.:

kumofs.py mq ’labels.starred=="True"’ "

starred"

where "starred” would be the name of the virtual folder to
be created under the main mount point. Moreover,
executing further queries in that folder, would use as input
only the files present in it; this would allow for a fluent
representation of nested filtering of the results.

Summary and lessons learned

The narrative arc, which starts with evidence acquisi-
tion, continues with the analysis of cloud-native artifacts,
and ends with a filesystem adaptation to allow prior tools
to work with cloud data, represents the evolution of our
thinking over the course of nearly a year of working with
cloud services.

5 https://github.com/stedolan/jq.

Some of our initial conjectures, such as the need to
utilize the public API to perform the evidence acquisition,
were soundly confirmed. However, our expectation that the
API will solve all acquisition problems (and will save us the
reverse engineering effort) ran aground when we
approached cloud-native artifacts. These forced us to
analyze the private communication protocols of web apps,
in order to obtain the fine details of user actions over time.

In the case of Google Docs, the reverse engineering (RE)
effort was not unreasonable relative to the value of the
information retrieved; however, there are no guarantees
that this will be the case with other services. Our pre-
liminary examination of similar editing tools, such as Zoho
Writer and Dropbox Paper, yielded both good and not-so-
good news. The good news is that they generally follow
Google's pattern of storing fine-grain details of every user
action; the problem is that their implementations, while
broadly similar, are less RE-friendly. This brings up the issue
of building tool support, probably in JavaScript, to facilitate
and automate the RE process.

In our kumo £s work, we came back full circle in an effort
to bring the traditional command-line toolset to the cloud.
We were able to stretch the filesystem abstraction quite a
bit to present a file-based view of the richer interface
offered by cloud drive services. We believe that this, and
similar, efforts to provide an adaptation layer that can
stretch the useful lifetime of existing tools will be impor-
tant in the near term. It is an open question whether this
will be enough over the long term; our expectation is that
we will need a much more scalable solution that will work
with structured data, rather than generic file blobs.

There are a couple of lessons with respect to building
cloud forensic tools that may benefit other research and
development efforts.

Understanding the cloud application development process
is critical. Decades of client-centric analysis has conditioned
forensic researchers and practitioners to almost reflexively
bring a RE-first mindset to a new problem area. However,
software development practices have evolved from build-
ing monolithic standalone application to composing the
functionality out of autonomous modules communicating
over well-defined APIs, and distributed between clients
and servers. This creates natural logging points, which
developers use extensively, especially to record user input.
Thus, historical information that we traditionally struggle
(and often fail) to obtain is often an API call away (see
Google Docs).

Software development is almost always easier and
cheaper than reverse engineering followed by software
development. As an illustration, the core of our kumodd
prototype is less than 1600 lines of Python code (excluding
the web UI) for four different services. We would expect
that an experienced developer could add a good-quality
driver for a new (similar) service in a day, or two,
including test code.

In sum, understanding the development process and
tools is critical to both the identification of relevant infor-
mation sources, and the sound and efficient acquisition of
the evidence data itself.

Reverse engineering is moving to the web. As illustrated
by our work on Google Docs, critical forensic information
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may only be acquired by reverse engineering the private
web protocol and data structures. We found this flavor of
RE to be easier than stepping through x86 assembly code, or
trying to understand proprietary file formats. There are a
couple of reasons to think that this may be representative of
web app RE in general. Specifically, we can readily observe
the client/server communications, and the client cannot
afford to have a complicated encryption/obfuscation
mechanism, as it will add latency to every user interaction.
We can also readily instrument the environment by
injecting JavaScript code into the client context.

In sum, the nature of RE efforts is moving away from
stepping through x86 assembly code, and towards
reversing of network protocols and JavaScript code/data
structures. The higher modularity of modern code is likely
to simplify the RE effort, and to provide more historical
information.

Forensics of SaaP and SaaS are (very) different. The tran-
sition from a world of software products to a world of
software services requires a rethinking and of all the
fundamental concepts in digital forensics. For example, in
data acquisition, the old “physical is always better” princi-
ple is quickly approaching its expiration date. Intuitively, it
represents the idea that we should minimize the levels of
indirection between the raw source data and the
investigator.

However, the insistence on obtaining the data from a
physical carrier not only creates problems of access in the
service world, it can lead to results that are demonstrably
incomplete and potentially outright wrong. Cloud drive
acquisition is an example of a scenario where the search for
“physical” source leads us astray.

Instead, we propose that an investigator should always
look for the most authoritative data source. In the case of
Saas, the authoritative source is the cloud service, while the
local file system is properly viewed as a cache. We would
never consider performing filesystem forensics based in the
filesystem cache, yet we still look to the client cache in
cloud drive acquisitions. This is clearly unsafe.

Future outlook

Attempting to predict the future is usually a thankless
exercise with huge margins for error. However, digital fo-
rensics has the distinct advantage of being reactive with
respect to IT developments. This gives us the time and
opportunity to not so much predict forensic tool develop-
ment, but to reason about what major (currently in place)
IT trends mean for forensics.

The growing importance of SaasS. For the vast majority of
businesses, the real benefits of cloud computing lie in
divesting entirely of the need to manage the IT stack. In
other words, renting VMs on AWS (IaaS) is just a first step in
this direction; the end point is SaaS, which delivers (and
manages) the specific end-user service the enterprise
needs. According to Cisco (2014), the fraction of installed
SaaS workloads on private clouds will grow from 35% in
2013 to 64% in 2018, following a 21% CAGR. At the same,
[aaS is projected CAGR is only 3%, which will shrink its
relative share from 49% to 22%.

The implication for forensics is that analysts will be
called upon to investigate proprietary SaaS environments.
Unlike IaaS cases, which are fairly similar to traditional
physical deployments, such investigations will require a
different set of tools and techniques.

Software frameworks & case-specific tooling. Our expe-
rience has shown us that, in the world of cloud APIs, there
are some loose similarities but the specifics differ sub-
stantially, even for comparable services. Considering the
Dropbox and Google Drive APIs, we see two completely
different designs-the former aims for minimalism with
only 18 file metadata attributes (Dropbox), whereas the
latter offers well over 100 (Google) for the corresponding
API response. If we add the variety of methods and calling
conventions, the two services quickly diverge to the point
where it is difficult to formalize a common pattern.

One part of the solution is to build an open platform that
allows for the community to contribute specialized mod-
ules for different services; if successful, such an effort can
be expected to cover the most popular services. Nonethe-
less, we can expect that forensic practitioners would need
to be able to write case-specific solutions that can perform
acquisition (and possibly analysis) using APIs specific to the
case.

Integration with auditing. One major area of develop-
ment for cloud services will be the increased level of audit
logging and monitoring. Once the IT infrastructure leaves
the premises, it becomes even more important to have an
accurate, detailed, and trustworthy log of everything that
takes place in the virtual IT enterprise. This is not just a
compliance issue, but also has a direct effect on the bottom
line and relationships with providers.

Since this is a common problem, we can expect common
practices and standards to emerge in relatively short order.
These would be a golden opportunity for forensics, and
would also open the door for (low-cost) extensions to such
standards to capture additional information of more spe-
cific forensic interest.

Forward cloud deployment. Looking 5—10 years ahead,
we can expect that a substantial, and growing, majority of
the data will be in the cloud. As it continues to accumulate
at an exponential rate, it becomes increasingly costly and
impractical to move a substantial part of it over the
network (during acquisition) and process it elsewhere. This
phenomenon is informally referred to as data gravity, and is
openly encouraged by cloud providers as a means to retain
customers.

The massive aggregation of data means that forensics
will be faced with the choice of partial data acquisition
(along the lines of eDiscovery), or forward deployment of
forensic analysis tools allowing them to be collocated with
the forensic target (same data center). We expect that for-
ward deployment will become a routine part of the cloud
forensic process, especially for large providers of common
services. We see this as an additional tool that would enable
fast, large-scale screening and selective acquisition.

Large-scale automation. One strong benefit of logical
data acquisition is that it will enable the dramatic auto-
mation of the forensic process. Currently, the most time-
consuming and least structured part of a forensic analysis
is the initial acquisition, followed by low-level data
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recovery (carving) and file system analysis. In contrast,
logical acquisition needs none of these and can start
working with the evidence directly. Working via a logical
interface implies that the structure and semantics of the
data is well known and requires no reverse engineering.

In other words, forensic analysis will look a lot more like
other types of data analysis, and this will bring about an
unprecedented level of automation. In turn, this could
bring us much closer to the proverbial “solve case” button
than we currently imagine.

Conclusions

The main contributions of this work to digital forensic
research and practice are as follows:

First, we made an extensive argument that cloud fo-
rensics presents a qualitatively new challenge for digital
forensics. Specifically, web applications (SaaS) are a
particularly difficult match for the existing set of forensics
tools, which are almost exclusively focused on client-
centric investigations, and look to local storage as the pri-
mary source of evidence.

In contrast, the SaaS model splits the processing be-
tween the client and the server component, with the server
carrying most of the load. Both the client code and the data
are loaded on demand over the network, and the cloud
service hosts the definitive state of the user-edited arti-
facts; local storage is effectively a cache with ancillary
functions and its contents is not authoritative. Therefore,
the use of traditional forensic tools results in acquisition
and analysis is inherently incomplete.

Second, we demonstrated—via a suite of tools focused
on cloud drive forensics—that an API-centric approach to
tool development yields forensically sound results that far
exceed the type of information available by client-side
analysis. This includes both complete content acquisition
(containing prior revisions, and snapshot of cloud-native
artifacts), and detailed analysis of Google Docs artifacts,
which (by design) contain their full editing history. The
latter was the result of extensive reverse engineering effort,
which showed that web apps are likely to have much more
detailed history/logs than local applications.

Third, we presented a tool, kumofs, which provides an
adaptation layer between the local filesystem, and the
cloud drive service. It provides a drive mount capability,
which creates a standard POSIX interface to the content of
files, thereby enabling the direct reuse of most existing
tools. Kumofs also addresses the semantic gap that exists
between the cloud drive service's rich versioning and
metadata information, and file conversion capabilities, and
the much simpler POSIX API. We introduced virtual folders,
akin to database views, which allow us to show prior re-
visions, and to “time travel”—create views of the data as of a
specific date/time. Further, they also allow us to provide a
query interface that can filter the data displayed in the
virtual folder based on all the metadata provided by the
service.

Finally, we argued that the outline of the near-to-
medium term future developments in cloud forensics can
be reasonably predicted based on established IT trends. On
that basis, we pointed out several developments that we

expect to come to fruition. We also made the case that the
field is in need of a period of active, diverse, and creative
technical experimentation that will form the basis for next
generation of best practices.
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