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a b s t r a c t

Identification of operating system kernel version is essential in a large number of forensic and security
applications in both cloud and local environments. Prior state-of-the-art uses complex differential
analysis of several aspects of kernel implementation and knowledge of kernel data structures. In this
paper, we present a working research prototype codeid-elf for ELF binaries based on its Windows
counterpart codeid, which can identify kernels through relocation entries extracted from the binaries.
We show that relocation-based signatures are unique and distinct and thus, can be used to accurately
determine Linux kernel versions and derandomize the base address of the kernel in memory (when
kernel Address Space Layout Randomization is enabled). We evaluate the effectiveness of codeid-elf on a
subset of Linux kernels and find that the relocations in kernel code have nearly 100% code coverage and
low similarity (uniqueness) across various kernels. Finally, we show that codeid-elf, which leverages
relocations in kernel code, can detect all kernel versions in the test set with almost 100% page hit rate
and nearly zero false negatives.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Identification of operating system (OS) kernel version is
important in both proactive security monitoring and penetration
testing, and reactive forensic applications (Ahmed et al., 2015b;
Ahmed et al., 2012; Javaid et al., 2012; Ahmed et al., 2015a; Ahmed
et al., 2013; Bhatt et al., 2018; Grimm et al., 2017). For example,
correct identification of the kernel in a memory snapshot enables a
memory forensics toolkit (such as Volatility (Ligh et al., 2014)) to
correctly parse important kernel data structures for forensic anal-
ysis; network packet-based kernel version identification (such as
nmap (Lyon, 2009) and nessus (Lampe, 2005)) enables the
penetration tester to select particular exploits pertaining to the
specific OS kernel version.

One major problem during kernel version identification is the
ability to find the location of the base address of the kernel binary
in a memory dump. During the process of booting, kernel base
address is randomized every boot using kernel Address Space
Layout Randomization (KASLR) (Gruss et al., 2017) to pro-
tect against exploitation techniques such as return-oriented

programming (ROP) (Prandini and Ramilli, 2012). By randomizing
the address, the attacker is not able to exploit the system even if
they have access to the offsets of certain functions via System.map.
Although KASLR was meant to be a defensive technique against
exploitation, it presents the forensic investigators with an addi-
tional hurdle of figuring out the base address of the kernel before
any further investigation can be performed on the memory
snapshot of a live system.

Kernel code fingerprinting systems require high coverage of the
main kernel code to derive sufficient information to differentiate
among various similar kernel versions containingminor differences
at binary level (Hebbal et al., 2017). Thus, the signatures obtained
from the kernels must be unique or have a low degree of similarity
between various versions.

The state-of-the-art techniques in kernel version identification
are based on complex differential analysis of several aspects of
kernel code implementation (Gu et al.,2012) or complicated anal-
ysis of the memory dumps (Gu et al., 2012; Hebbal et al., 2017; Gu
et al., 2014). Furthermore, the current techniques for the deran-
domization of kernel base-address employ brute forcing and in-
formation leakage. Realizing the need for a comprehensive solution
for Linux kernels, in this paper, we present a technique used to
leverage entries in relocatable code tables in kernel elf executables to
perform kernel version identification (by detecting kernel pages)* Corresponding author.
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and further derandomize the base address of the kernel. We pre-
sent a research prototype codeid-elf which uses the relocation
entries in the elf kernel binary to create robust signatures and
matches them as per an algorithm for both kernel version identi-
fication and base address derandomization. codeid-elf is entirely
automated as it does not require human intervention in the loop to
generate and use the signatures. Finally, we evaluate our imple-
mentation of codeid-elf against 22 kernel versions representing a
blend of neighbor kernel releases that are likely to have similar
code implementations.We find that codeid-elf can accurately detect
the versions of kernels with almost 100% page hit rate.

This paper is organized as follows: it presents the background of
Kernel Version Identification and Kernel base address derandom-
ization, then discusses the architecture and methodology of the
implementation of codeid-elf. It further presents the evaluation of
codeid-elf usingmany Ubuntu-16.04 LTS 32-bitmemory dumps and
their corresponding kernel version binaries, and finally concludes
along with the scope for future work.

2. Background work

This section mainly discusses the previous work on OS-kernel
version identification and derandomization of Base Address of
Kernel.

2.1. OS-kernel version identification

Deep analysis techniques are commonly used in the past
for kernel version identification. They parse and interpret
memory captures to find implementation traits unique to
kernel versions.

Gu et al. (2012) propose OS-Sommelier, which extensively an-
alyzes and parses the memory dump for kernel version identifi-
cation by leveraging virtual to physical address translation and
disassembling code. To create a signature of the kernel, the tool
takes a snapshot of the memory of the known kernel and processes
it in three major steps. First, it identifies the page global directory
(PGD) in the dump for virtual-to-physical address translation.
Second, it identifies readable pages in kernel code by using the fact
that kernel-code pages are marked as read-only for code protec-
tion. After the core-kernel code has been identified, the tool
generates cryptographic hashes of these kernel-pages after
normalization by zeroing out any pointer values in the kernel pages
that might have been changed. These hashes are the known kernel
signatures. Lastly, a memory dump of an unknown kernel is taken,
and steps mentioned above are applied to the dump to create a list
of known kernel signatures. To identify kernel versions, a compari-
son is made between the signatures obtained from a target memory
dump and previously identified known signatures. Since crypto-
graphic hashes are involved, it is safe to assume that this process is
time-consuming relative to other methods which avoid hashing.
Also, disassembly of the kernel code to zero out the pointer values
is logically a complicated process.

Lin et al. propose Siggraph (Lin et al., 2011), which relies on
identifying in-memory kernel data structures. One main limitation
of this approach is that kernel data structures tend to remain the
same in many minor kernel releases. Furthermore, data structure
changes across different kernel versions are hard to detect and may
require a manual reverse engineering effort by the researcher,
which increases the intrinsic level of tedium in using this approach
in real life.

Volatility (Ligh et al., 2014) is a memory forensic toolkit for
forensic analysis of memory images. Knowledge of the precise OS
kernel version is important for many of its functions. Volatility
implements its kernel version identification for Windows and

Linux both by maintaining a profile of a kernel version for parsing
memory captures and applying correct set of data-structure defi-
nitions. The imageinfo plugin (Ligh et al., 2014) in volatility scans a
whole memory dump using predetermined signatures to find the
kernel debugging symbols table which contains the exact kernel
version information. However, this approach is fragile because the
signature-dependent values are vulnerable to malicious modifica-
tions. Furthermore it has considerable overhead because the
process of deriving signatures is not fully automated.

Ahmed et al. (2015b) propose codeid, which generates signa-
tures from relocation entries in the executables of the Portable
Executable (PE) format for various programs and uses a differential
technique during the matching process. The generated signatures
consist of an 〈offset; pointer〉 tuple. Offset refers to the offset of the
relocation location with reference to the base address of the
executable, whereas pointer refers to the 32- or 64-bit value of the
pointer located at that particular offset. The signatures are said to
match if the difference of the pointer and the base address of the
code in memory is the same as the difference of the pointer and the
base address of the code in the PE executable for all the signatures.
However, for different relocation entries, the difference of the
values can be different. Also, this technique expects a secondary
loop to be run to derandomize the kernel. In addition, codeid is
designed and evaluated for Windows kernels.

Hebbal et al. (Hebbal et al., 2017) propose anothermethod called
k-BinID that locates, fingerprints, and derandomizes operating
system kernels at run time by using static binary analysis. They also
introduce a technique called backward disassembly to correctly
locate instructions that precede a given virtual address in the
memory. The main drawback of this method is that K-binID relies
heavily on a database of kernel code blocks signatures in order to
precisely fingerprint the main kernel binary code. Thus, if the said
signatures are unavailable, this method is not applicable.

Network fingerprinting tools such as nmap (Lyon, 2009) and
Xprobe2 (Arkin et al., 2003) remotely identify the kernel version via
analysis of the network packets being exchanged. Since the
implementation of the TCP/IP stack is different in different OSes, the
intrinsic differences between the crafted packets can be used to
identify the OS versions. However, we are looking to identify the
kernel versions in memory dumps as opposed to live systems.
Such network-based approaches for OS-identification are beyond
the scope of our work.

There are several other approaches which leverage the inter-
rupt descriptor table (IDT) and global descriptor table (GDT) and
the ways these tables are set up in different OSes and architec-
tures. For instance, Christodorescu et al. (Christodorescu et al.,
2009) compute cryptographic hashes of interrupt handler code,
and then use them as signatures to identify different kernels.
Quynh et al. (Quynh, 2018) on the other hand propose kernel
version identification approach by leveraging the fact that the
protected mode of the Intel platform enforces few constraints on
kernel implementation.

2.2. Derandomizing Base Address of Kernel

As mentioned, derandomizing the base address of the kernel is
one of the major hurdles for the forensic analysis of a memory
dump. Several attempts at breaking user space ASLR have been
made over the years. Shacham et al. (2004) demonstrate a simple
brute force approach, which require only 216 probes to derando-
mize a vulnerable 32-bit program. Information leakage is another
way to break ASLR. Furthermore, Jang et al. use Intel TSX to
derandomize Linux Kernels (Jang et al., 2016). Hund et al. leverage
practical hardware level side-channel attacks against KASLR (Hund
et al., 2013).
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Volatility derandomizes the kernel base address by identifying
KdDebuggerDataBlock (KDBG) (bneuburg, 2017; Ligh et al., 2014), a
data structure maintained by the Windows kernel for debugging
purposes in memory. For Linux systems, Volatility looks for the
string ”swapper” followed by a few null bytes in memory, checks
certain conditions to see if the location of the string is relevant or
not, and finally determines the KASLR shift by subtracting physical
address of init_task from the physical address where said condi-
tions apply. It is possible for malware to mimic the nature of
the “swapper” string (bneuburg, 2017) and confuse Volatility, which
makes this approach somewhat unreliable.

Gu and Lin (2016) present four approaches to breaking
KASLR for forensic applications, viz., patched-code based approach,
unpatched-code based approach, brute-force approach, and read-
only pointer based approach. These approaches, however, have
high performance overhead and depend on a deep understanding
of kernel for derandomization. For instance, they require brute-
forcing, comprehensive parsing of elf-binary, disassembling of
kernel code, finding data structures in memory such as Global
Descriptor Table (GDT), etc.

3. Design rationale

This section presents an overview of codeid-elf and various
details associated with it.

3.1. Design Technique

Let S be one of the obtained signatures. S is a tuple consisting of
an offset from the base address and the pointer value at that offset
in disk. Let P(i) refer to the ith page in memory. Also, let ptr be
the value at P(i)þS.offset in memory. So, if ptr belongs to the
kernel code which starts at the base address Bm and the code in disk
starts at the base address Dm, then the following is true:

Bm " Dm ¼ RandomizedOffset ¼ ptr " S:pointer (1)

If RandomOffset is the same across several or all signatures in
the page, then the page matches the executable from which
the signatures are extracted. Also, if all the pages in the .text

section of the Linux (ELF format) executable match, then the
execution of the executable has been detected in memory by
codeid-elf.

The following can be inferred from equation (1). RandomOffset
can be zero if ASLR is not enabled. It can be less than Bm if an

executable is loaded at a lower memory location than Dm, the
base address of the code on disk. This will not be the case as in
Linux as the kernel is loaded at or above virtual addresses
starting at 0xC0000000. In general, it should also be noted that if
paging is enabled, then only certain pages of the executable
might be detected from memory. Moreover, if the pages that are
detected are not found in the Global Descriptor table (GDT), then
remnants of the code detection from a previous code execution is
detected.

Algorithm 1. Algorithm to extract signatures.

Figs. 1 and 2 illustrates this concept with reference to the kernel
version 4.10.0e28-generic. Here, we see that the difference
between the in-memory code pointer value and the in-disk code
pointer value corresponds to the randomized offset. If this differ-
ence is the same across all signatures for the page, then the page is
said to have matched the executable.

4. Implementation details

Conceptually, the functionality of codeid-elf can be broken
down into following parts:

4.1. Signature generation

Signatures derived from the ELF binary consist of a tuple
〈offset; pointer〉, where the offset refers to the location of relocation
with reference to the base address of the code segment in memory
and/or file and the pointer refers to the address pointer located at the

Fig. 1. An illustration for the Design Technique of codeid-elf.
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said location. The signatures that are derived can then be collected
into page-wise groups.

The primary relocation entry type we are interested in is
R_386_32. In this type of relocation entry, the pointer value is
directly replaced at the said offset during runtime, and hence no
modification needs to be done before the offset-pointer tuple is
used as a signature. In another type of relocation entry, called
R_386_P32, the pointer at the particular offset is the program
counter/instruction pointer (IP) relative value and not the actual
pointer. Since we do not have the IP value, it is not possible for us to
use class of relocation entries. The offsets are extracted from the ELF
binary using the readelf -r command line utility. Then, a python
script is written to extract the offsets of the relocation entry from
the output of readelf utility such that they are of the type
R_386_32 as per Algorithm 1. A dictionary indexed using the page
address is created out of these offsets.

4.2. Page detection

In this stage in the execution of codeid-elf, the program iterates
through all the pages in the memory dump per code-page in the
code section and checks for uniformity in the difference between
the majority of the pointer values as per Algorithm 2.

4.3. Executable detection

If all pages in the .text segment of the kernel executable are
detected according to Algorithm 3, then it is ascertained that the
executable has been detected by codeid-elf.

Furthermore, for derandomization of the base address, it is not
necessary to run this code for all pages. In this case, just looking for
the first page of the kernel code should suffice.

5. Gathering evaluation data

The functionality of codeid-elfwas tested against several kernel
versions. All experiments were conducted on Intel Core
i7-7000 CPU 64-bitwith 32 GB of RAM. To conduct experiments,
we needed to gather several memory dumps corresponding to
various kernel versions, and gather their corresponding vmlinux

executables.

5.1. Installing kernel versions

We use a Virtual Machine (VM) to obtain vmlinux execut-
ables for the kernels by installing different kernels inside
Ubuntu-VM along with their corresponding packages using the
apt-get utility.

This enabled us to move towards Memory Snapshot Collection.

5.2. Obtaining memory snapshots

The memory snapshots required for evaluation were obtained
from a VM in VMware Workstation 14.0 running Ubuntu 16.04

LTS. To create the memory snapshots, first a snapshot was created
in the VM. Then, the *.vmsn and *.vmem files corresponding to
the particular snapshot were copied to a familiar location. Then,
vmss2core utility was used as follows:

vmss2core -M 〈$:vmsnfile〉 〈$:vmemfile〉
Using vmss2core utility in the manner mentioned above

created a file called vmss.corewhich contained physical layout of
the guest-VM memory. The memory snapshots we used were
512 MB in size (131,072 pages).

5.3. Obtaining vmlinux executable

A linux system does not keep vmlinux executable by default. To
obtain the executable from the VM corresponding to the particular
kernel, we need to first add the debs repository. To do this, we
execute the following commands:

Listing 1. Bash script to obtain vmlinux executable

Algorithm 2. Algorithm to detect pages in memory using
relocation entries.

Fig. 2. Block Diagram representing the functionality of codeid-elf.
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Algorithm 3. Algorithm to detect all pages of an executable in
memory.

After script 1 is executed inside the host VM, the vmlinux file
for the corresponding kernel version can be found inside/usr/lib/
debug/boot/folder. The ELF-executables found here are copied to the
host machine for further analysis. This approach avoids compiling
all the kernels from source code. However, the list of
linux-image-* packages available on Ubuntu 16.04 LTS

was not an exhaustive list of all Linux kernels. All in all, we eval-
uated codeid-elf using 22 different kernel versions ranging from
4.4.0 e 24 to 4.10.0e14.

6. Evaluation results

6.1. Relocation prevalence & code coverage

We first study the prevalence and the coverage of the relocations.
Prevalence of relocation entries is defined as the average number of
relocation entries in the executable per page, whereas coverage of
relocation entries is defined as the fraction of pages that have
relocation entries in them.

Table 1 presents a summary of our findings. In all cases, we
found the minimum number of relocation entries to be two to build
a page signature. Moreover, the third column in Table 1 represents
(1" codecoverage). It is the ratio of the pages that have no re-
locations. Thus, codeid-elf cannot detect these pages. The column
shows that such pages are not in significant number and thus, the
signatures extracted from relocation entries of kernel executables
approximately cover all of the kernel code.

6.2. Accuracy analysis

In this section, we study the effectiveness of codeid-elf
in detecting pages belonging to the kernel executable, correctly
identifying the base address of the kernel, and also correctly
identifying the version of the kernel via fingerprints. To establish
accuracy, first we needed to find a way of establishing ground truth.

Establishing Ground Truth. To establish a base for comparison, we
used in-VM tools that were available to us. For instance, to find out
the base address at which the kernel is loaded, we looked at the
address for startup_32 symbol inside/proc/kallsyms file available to
us. To find the range of memory in which the kernel code is loaded,
we looked at the output of/proc/iomem which showed us the
physical address of the base and the end of the kernel. Moreover,
we knew the version of the kernel when we took the memory
snapshot of that particular kernel using VMware Snapshot Mecha-
nism. We used this previous knowledge to verify if the kernel
version was identified correctly or not.

Identifying the base address of the kernel code and the range of
the kernel code allowed us to define the following outcomes of
experimentation:

% True Positive(TP): This refers to the number of pages that have
been detected by codeid-elf and actually contain kernel code. It
is equivalent to a page hit.

% False Positive(FP): This refers to the number of pages that have
been detected by codeid-elf but do not belong to the kernel. It is
equivalent to a page false hit.

% True Negative(TN): This refers to the number of pages that have
not been detected by codeid-elf and actually do not belong to
the kernel. It is equivalent to correct rejection.

% False Negative(FN): This refers to the number of pages that have
not been detected by codeid-elf and actually contain kernel
code. It is equivalent to a miss.

6.3. Page detection rate

With the above mentioned outcomes of experimentations, we
can define the following metrics for page-level accuracy.

Sensitivity ¼
TP

TP þ FN
(2)

Table 2 shows the hit rate for various kernel versions. Here, we
see that the Sensitivity is very close to 100%. Since kernel code is not
paged, we had expected the hit rate to be 100%. During the
detection process, only the pages that did not have any signatures
were the majority of false negatives. Moreover, we believe that
since at runtime, the kernel is able to modify itself via the alter-
native instructions, this might have resulted in few pages being
placed in the false negatives.

In the beginning, we chose to stopwhen codeid-elf detected the
first memory-page that completely matched the respective code-
page. However, this resulted in a significant number of false posi-
tives. Hence, we opted to iterate through the entire memory dump
per single code-page, detect all memory pages with minimum of
two signature matches, and pick thememory pagewith the highest
number of signature-matches as the detected in-memory page.
This measure reduced our false positives to almost zero. On
observation, it was found that the remaining false positives were
pages that were in either .data segment or the .bss segment of
the kernel. We had previously obtained the range of kernel code via
the /proc/iomem file inside the VM during the process of creating
memory dumps. This was a precautionary measure as we did not
want codeid-elf to be looking anything but the kernel code.
This enabled us to ignore any detected-page that was not in the
kernel code range for the particular kernel. These measures
reduced our false positive rate to zero.

6.4. Executable-level accuracy

Regarding file-level accuracy, it was first vital to study about the
similarity of kernel executable signatures. To do this, we extracted
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the signatures from all kernel executables and placed them in sets.
Finally, we figured out the cardinality of the intersection of these
sets to come up with the number of signatures that were common
in two or more kernels.

If S be the number of common signatures in two kernels A and B,
n(A) be the number of signatures generated from kernel A, n(B) be
the number of signatures generated from kernel B, and SimAB be the
similarity of kernels A and B thenwe calculated similarity as follows:

SimAB ¼ S
nðAÞ

(3)

Conversely, we calculate similarity of kernel B to A as follows:

SimBA ¼
S

nðBÞ
(4)

We used Algorithm 4 to calculate similarity between two ker-
nels.

Algorithm 4. Algorithm to detect similarity between two pages.

Table 3 presents similarity between a subset of the distinct
kernels in terms of the number of common signatures that were
generated by using codeid-elf. As we see, the percent overlap of the
generated signatures from the kernel executables is quite low in
majority of the cases. This implies that majority of the pages thus
detected will be characterized by a set of signatures unique to
the particular kernel. This indirectly supports the premise that
relocation entries almost uniquely fingerprint kernel, and thus
allow for kernel identification.

Keeping this inmind, we evaluated codeid-elf for kernel version
identification of the kernels mentioned in Table 2. Codeid-elf was
correctly able to identify specific versions of the said kernels with
100% accuracy.

6.5. Performance analysis

The algorithm for codeid-elf extracts signatures from all the
pages of the kernel code and compares those signatures against
each page in thememory snapshot. Moreover, it was important that

signatures pertaining to each page of kernel code be checked
against every single page in memory to avoid false positives.
However, this meant that we needed to sacrifice some of the
performance of codeid-elf.

As opposed to the execution times of similar algorithms (Gu and
Lin, 2016; Hebbal et al., 2017), the execution of codeid-elf is several
times slower. The execution time statistics for codeid-elf are shown
in Fig. 3.

Fig. 3 represents the time taken by codeid-elf for the detection of
particular kernel version. We see that execution time for codeid-elf is
higher in newer kernels as opposed to older kernels. Firstly, the
average execution time is probably high because of codeid-elf having
to check every single code-page against allmemory-pages.Moreover,
the increase in the timing measurements in newer kernels as
opposed to older kernels is probably because of increasing number of
relocation entries in newer kernels as opposed to older kernels. Also,
our implementation of codeid-elf consisted of a mixture of C, Py-
thon, and Bash scripts with a significant amount of file IO operations
to avoid overwhelming thememory of our host system. This, coupled
with an increased number of relocation entries in newer kernels as
opposed to older kernels, could possibly have caused the perfor-
mance of codeid-elf to have deteriorated in newer kernels.

6.6. Possible optimization measures

It should be stressed that our current implementation has not
been fully optimized for performance. To increase performance, the
following measures could be implemented:

% It is known that Linux Kernels are not paginated, and are located
in virtual addresses greater than 0xC0000000 in 32-bit systems.
Moreover, finding the base address of the kernel code is a simpler
problem as opposed to Kernel Version Identification as not all
pages have to be detected in order to find it. Since kernel code is
stored as a contiguous block,we could incorporate facts about the
kernel ranges into codeid-elf to increase its performance.

% As we see in Table 1, the prevalence of relocation entries is quite
high. Currently in codeid-elf, we use all relocation entries of the
type R_386_32 under .rel.text as signatures. We could
devise a method to intelligently create a subset of signatures
by decreasing the number of signatures without sacrificing code
coverage and decreasing relocation prevalence. This would be a
major optimizationmeasure that could be applied to the current
implementation.

% Implementing codeid-elf entirely in C and removing Python
and Bash scripts would also be an optimization measure to
boost its performance.

7. Comparison with previous works

The process of identifying kernel version involves devising
unique methodology to fingerprint the kernel. In this aspect, we
believe that ourmethod is superior as opposed tomethods proposed
by Hebbal et al. (Hebbal et al., 2017) and (Roussev et al., 2014).
A comparison between codeideelf and previous works based on
their reports has been outlined inTable 4. Hebbal et al. reported over
99% similarity in certain code blocks in their study based on k-BinID.
Also, Roussev et al. (Roussev et al., 2014) reported that some of the
kernels they did their experiments on had as low as seven unique
blocks because changes in code between said kernels was minimal.
As Table 3 shows us, the number of same relocation entry-based
signatures generated by codeid-elf is quite minimal. Except for
kernels 4.11.0e14-generic and 4.11.0e13-generic which
have very similar relocations, remaining comparisons revealed that
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our signatures are at least 90% unique. This is excellent, as unique
fingerprints translate to higher detection accuracy.

Another advantage of our method as opposed to previous
methods is that our method is simple to implement and doesn't
require any extraneous knowledge like disassembly of code (Hebbal
et al., 2017; Gu et al., 2012), or complicated memory dump analysis
(Gu et al., 2012). It just involves the comparison of the differences
between pointer values at specific locations in a page, which makes
it easy to comprehend and to implement.

Although we did not do an exhaustive study for all Linux kernels,
we believe that our method will work for other kernel versions, and
even custom written kernels as long as sufficient amount of

relocation entries similar to the type R_386_32 are available and the
derived signatures have nearly 100% code coverage.

8. Conclusion and future works

In this work, we considered the problem of finding known
kernel code in memory dumps for Linux kernels. As a solution, we
used relocation entries extracted from the ELF executables and
used them as robust unique fingerprints to identify the kernel. We
also did a similarity study across 22 kernel binaries with respect to
their relocation entries which provided some proof as to the pre-
vious claim. Moreover, we showed that although the base address

Table 1
Relocation prevalence and code coverage.

Vmlinux Kernel Version Relocation Prevalence Ratio of Pages with no Relocation Entries

4.4.0e22 55.4482 0.0050
4.4.0e24 55.4314 0.0056
4.10.0e14 54.0464 0.0047
4.10.0e14-lowlatency 53.2292 0.0051
4.10.0e19 54.0825 0.0042
4.10.0e19-lowlatency 53.2381 0.0061
4.10.0e20 54.0825 0.0042
4.10.0e21 53.9475 0.0070
4.10.0e22 53.9418 0.0051
4.10.0e24 53.9442 0.0042
4.10.0e26 53.9584 0.0037
4.10.0e27 53.9584 0.0037
4.10.0e28 53.9584 0.0037
4.10.0e30 53.9593 0.0056
4.11.0e13 52.9995 0.0093
4.11.0e14 52.9995 0.0093
4.13.0e16 52.9387 0.0075
4.13.0e17 52.9114 0.0084
4.13.0e19 52.9171 0.0094
4.13.0e21 52.9171 0.0094
4.13.0e24 52.8611 0.0075
4.13.0e25 52.8611 0.0075

Table 2
codeid-elf accuracy on Kernel version identification and derandomization.

Vmlinux Kernel
Version

Number of Generated
Signatures

Size of Kernel Code in
MB

Total Number of Pages in
code

Page Hit
Rate

Base Address of
Kernel

Derandomisation Kernel
Identification

4.4.0e22 108,734 7.6640 1961 99.47 0xc100000 √ √
4.4.0e24 108,812 7.6708 1963 99.43 0xc100000 √ √
4.10.0e14 113,984 8.2387 2109 99.52 0xdc00000 √ √
4.10.0e14-

lowlatency
113,059 8.2976 2124 99.48 0xc600000 √ √

4.10.0e19 114,060 8.2419 2109 99.57 0xd300000 √ √
4.10.0e19-

lowlatency
113,131 8.3010 2125 99.38 0xc800000 √ √

4.10.0e20 114,060 8.2419 2109 99.57 0xd100000 √ √
4.10.0e21 114,207 8.2701 2117 99.29 0xd000000 √ √
4.10.0e22 114,195 8.2702 2117 99.48 0xcc00000 √ √
4.10.0e24 114,200 8.2704 2117 99.57 0xc900000 √ √
4.10.0e26 114,230 8.2707 2117 99.62 0xc800000 √ √
4.10.0e27 114,230 8.2707 2117 99.62 0xda00000 √ √
4.10.0e28 114,230 8.2708 2117 99.62 0xdb00000 √ √
4.10.0e30 114,232 8.2713 2117 99.43 0xca00000 √ √
4.11.0e13 113,525 8.3678 2142 99.06 0xcd00000 √ √
4.11.0e14 113,525 8.3680 2142 99.06 0xd600000 √ √
4.13.0e16 112,336 8.2896 2122 99.24 0xd200000 √ √
4.13.0e17 112,384 8.2979 2124 99.15 0xcf00000 √ √
4.13.0e19 112,396 8.2987 2124 99.05 0xe000000 √ √
4.13.0e21 112,396 8.2987 2124 99.05 0xc300000 √ √
4.13.0e24 112,277 8.2987 2124 99.24 0xe600000 √ √
4.13.0e25 112,277 8.2987 2124 99.24 0xc400000 √ √
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of the kernel code could possibly be skewed because of KASLR, we
could use simple differential technique to derandomize the kernel
as well.

The fundamental merit of this method is that it is quite simple
and doesn't require any form of hashing, and/or deep analysis
techniques which can result in fragile, non-extendable methods.
Although we evaluated this approach to work for Linux kernel
version identification and derandomization, it can also easily be
extended to other executables. Another advantage is that the only
input required to generate signature in this method is the ELF
binary, and no knowledge of kernel data structures or analysis of
memory dumps is required.

Our experimental evaluation showed that we are able to detect
pages belonging to a particular kernel binary with nearly zero

misses. Most of themisses were because the corresponding kernel
page did not have any relocation entry. Codeid-elf correctly iden-
tified memory dumps containing 22 different Linux kernels with a

page hit rate of over 99%. This showed that our approach works
exceedingly well even in distinguishing kernel versions which are
close to one another in terms of their implementations.

The main limiting factor in our method is the execution time of
the algorithms. Because signatures belonging to each page of kernel
code has to be checked against every single page of memory to
avoid false positives, execution of the algorithms for kernel version
detection took several minutes. However, we noted that several
optimizations could be made to the current implementation of
codeid-elf to boost its performance.

In future, we would like to test this approach on custom built
Linux kernels. Wewould also like to extend this approach to test on
user-space binaries like Chrome, Firefox etc. Currently we evalu-
ated codeid-elf on 32-bit systems with Intel architecture. We
would like to extend it to other architectures like ARM. Finally,
although this method isn't targeted towardsmalware detection, we
believe that this approach can be reliably used for ad-hoc malware

Fig. 3. Execution time of codeid-elf for various kernels.

Table 3
Similarity of Kernels based on codeid-elf signatures.

Kernel A Kernel B Number of Common Signatures SimAB

4.10.0e21-generic 4.10.0e28-generic 23 0.0201
4.10.0e21-generic 4.10.0e22-generic 2107 1.8449
4.10.0e21-generic 4.10.0e14-generic 69 0.0604
4.10.0e21-generic 4.10.0e24-generic 2097 1.8361
4.13.0e25-generic 4.13.0e21-generic 99 0.0882
4.10.0e28-generic 4.10.0e30-generic 32,607 28.545
4.10.0e28-generic 4.10.0e20-generic 20 0.0175
4.10.0e28-generic 4.10.0e27-generic 29,530 25.8514
4.10.0e28-generic 4.10.0e26-generic 2273 1.9898
4.10.0e30-generic 4.10.0e27-generic 29,285 25.6364
4.10.0e30-generic 4.10.0e24-generic 102 0.0893
4.10.0e30-generic 4.10.0e26-generic 2163 1.8935
4.13.0e16-generic 4.13.0e21-generic 60 0.0534
4.10.0e20-generic 4.10.0e22-generic 149 0.1306
4.10.0e27-generic 4.10.0e22-generic 105 0.0919
4.10.0e27-generic 4.10.0e14-lowlatency 43 0.0376
4.13.0e19-generic 4.13.0e17-generic 214 0.1904
4.11.0e14-generic 4.11.0e13-generic 106,550 93.856
4.10.0e22-generic 4.10.0e14-generic 19 0.0166
4.10.0e22-generic 4.10.0e24-generic 28,825 25.2419
4.10.0e22-generic 4.10.0e26-generic 1569 1.374
4.10.0e24-generic 4.10.0e26-generic 1866 1.634
4.4.0e22-generic 4.4.0e24-generic 235 0.2161
4.10.0e19-lowlatency 4.10.0e14-lowlatency 1127 0.9962
4.13.0e21-generic 4.13.0e17-generic 214 0.1904
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signature generation and detection, and can be incorporated into
the security infrastructure.
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ASLR
Support

Version Detection
Accuracy

OS-Sommelier Low Yes √ 100%
k-BinID High No, derived at Run-Time using VMI √ 100%
Image-Based Kernel-Fingerprinting High/Low depending on Similarity

in implementation
No c 100%

codeid-elf Low No √ 100%
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