Digital Investigation 22 (2017) S57—S65

Contents lists available at ScienceDirect 2
DFRWS 2017

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

DFRWS 2017 USA — Proceedings of the Seventeenth Annual DFRWS USA
SCADA network forensics of the PCCC protocol

@ CrossMark

Saranyan Senthivel, Irfan Ahmed”, Vassil Roussev

GNOCIA, Department of Computer Science, University of New Orleans, 2000 Lakeshore Dr, New Orleans LA, 70122, USA

ABSTRACT

Keywords:

SCADA forensics

SCADA protocol

PCCC

Network traffic analysis
Programmable logic controller

Most SCADA devices have few built-in self-defence mechanisms, and tend to implicitly trust commu-
nications received over the network. Therefore, monitoring and forensic analysis of network traffic is a
critical prerequisite for building an effective defense around SCADA units. In this work, we provide a
comprehensive forensic analysis of network traffic generated by the PCCC(Programmable Controller
Communication Commands) protocol and present a prototype tool capable of extracting both updates to
programmable logic and crucial configuration information. The results of our analysis show that more
than 30 files are transferred to/from the PLC when downloading/uploading a ladder logic program using
RSLogix programming software including configuration and data files. Interestingly, when RSLogix
compiles a ladder-logic program, it does not create any low-level representation of a ladder-logic file.
However, the low-level ladder logic is present and can be extracted from the network traffic log using our
prototype tool. The tool extracts SMTP configuration from the network log and parses it to obtain email
addresses, username and password. The network log contains password in plain text.

© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Supervisor Control And Data Acquisition (SCADA) systems are
used to automate industrial processes, such as power generation
and distribution, gas and oil pipelines, and water and waste man-
agement. Their primary design requirement is safety, which typi-
cally requires real-time response to changes in the monitored
processes, and an ability to handle harsh working environment;
they were never designed to withstand cyber attacks of any kind.
Early SCADA systems were deployed in specialized isolated net-
works, which are not connected with corporate networks, or the
Internet. Thus, they were protected from remote attacks by virtue
of not being accessible over the network.

Over the past two decades, with the increased convergence of
data networks, SCADA systems are ever more tightly integrated
with the TCP/IP infrastructure (Ahmed et al., 2012). Although the
standardization of all communication brings substantial economic
advantages, it also brings the potential of remote attackers gaining
access to inherently insecure devices, and executing attacks on the
physical infrastructure with potentially catastrophic consequences
(McLaughlin et al., 2016; Robinson, 2013). Stuxnet for instance, is a
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malware that specifically targeted industrial automation systems
(Langne, 2013).

SCADA systems generally consist of sensors, actuators, pro-
grammable logic controllers (PLCs), and a human machine interface
(HMI) (Stouffer et al., 2011; Macaulay, 2012). A PLC is deployed at a
remote field site to provide immediate monitoring and control of a
physical process. HMI and other SCADA services (such as engi-
neering workstation and historian) run at a control center and
provide the means for operators to remotely observe and control
the processes.

A PLC communicates with its respective control center to send
the current state of physical process, which is then displayed by
HMI graphically for control operators. It uses sensors to obtain the
current state of physical process (such as pressure of the gas in
pipeline), and actuators (such as solenoid valve) to alter the current
state depending on the logic in the PLC. For example, a PLC may be
programmed to maintain pressure in a gas pipeline between 40 and
50 PSI. Based on readings from the pressure sensor, if the gas
pressure is more than 50 PSI, the PLC opens the solenoid valve to
release some gas until the pressure is reduced to 40 PSL

An engineering workstation at the control center runs PLC
programming software, which is used by control engineers to
program and transfer the control logic to a PLC over the network.
Unfortunately, an attacker can also acquire and utilize the software
to create a malicious control logic program, and download it to a
PLC after establishing a communication with the PLC. At worst, an
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attacker can compromise an engineering workstation and utilize its
programming software to re-program the PLCs, or to modifying the
current logic in the PLCs. The Stuxnet malware is a pertinent
example that mainly targets engineering workstation running
Windows operating system, and compromises Siemens STEP7
programming software to further infect the Siemens PLCs.

The most direct approach to investigating a potential breach is
to attempt to acquire the current logic from PLCs using the pro-
gramming software for further analysis. However, this method is
not viable if the communication between the PLC and control
center is disrupted. Also, the communication with the PLCs may not
be reliable if the system is under a cyber attack and the attacker
may manipulate the communication such as through man-in the
middle attack.

Therefore, to reliably investigate these kind of attacks, SCADA
network traffic log must be kept and analyzed to identify unau-
thorized transfer of control logic to PLCs including extracting
relevant forensic artifacts. A first step in this direction is to un-
derstand how a programming software transfers the PLC control
logic over the network using a SCADA protocol.

This paper presents a comprehensive analysis of PCCC protocol
for transferring control logic to a PLC. We use Allen—Bradley's
RSLogix 500 programming software (RSLogix500, 2017) and
Micrologix 1400 PLC (MicroLogix 1400 Series B, 2017) for experi-
ments. The analysis results show that when the programming
software downloads or uploads a control logic program to and from
the PLC, the network traffic not only contains the control logic but
also system configuration and other data (such as counter, input,
output, timer etc.). The PCCC message has file type and file number
fields that we use to extract and store different type of information
into files. Prior to this work, most of these file types had remained
undocumented even in vendor specifications.

Using differential analysis, we performed a comprehensive set
of experiments to understand the type of contents in the files and
further classify unknown file types accordingly. One of the first
observations is that, whenever RSLogix compiles the control logic,
it does not create any output file on the workstation. In other
words, there is no observable low-level representation of control
logic, data or configuration file that is suppose to be transferred to
and run by the PLC. This program, however, can be extracted from
the network traffic; the first sign of logic transfer (in the log) is that
the PLC is switched from RUN to PROGRAM mode, and back to RUN
upon completion of the transfer.

Based on our findings, we developed a proof-of-concept proto-
type tool, called Cutter, to perform the forensic analysis of SCADA
network traffic. cutter is useful for identifying any transfer of
logic program and configuration files to/from a PLC in a network
packet capture, and further extracting them for forensic analysis. It
parses the PCCC message format, identifies the boundary of the
messages representing start and end of the transfer of logic pro-
gram in a network traffic capture, filters out irrelevant messages
within the boundary, and assembles the relevant messages (con-
taining the program and other data files) in a correct sequence, and
stores the assembled data in files on disk. It is also capable of
parsing input, output and configuration files and presenting the
content in a readable format for further analysis. The input and
output files contain sensor readings and the state of other input
devices (such as on or off in toggle switches), and actuator state
respectively. The configuration files include SMTP client and
network configurations such as username/password, email ad-
dresses, and IP/Subnet mask.

We evaluate the cutter in two distinct scenarios. The first one
simulates an attacker modifying the control logic of a PLC. When
the logic is transferred to a PLC, it is captured in a network traffic
log; cutter analyzes the log and identifies the evidence of logic

transfer successfully. It further extracts the transferred logic from
the log and compares it with the original logic for integrity
checking. In the second scenario, attackers modify the SMTP client
configuration of a PLC by adding their email address to receive the
copy of notifications. cut ter extracts the SMTP configuration from
the log, compares it with the original, and identifies the attacker
email address successfully.

In sum, this work makes the following contributions to the field:

e We perform a detailed analysis of the network traffic of PCCC
protocol and reverse engineer the entire process of transferring
a control logic program to a PLC.

e We identify several unknown file types in the PCCC traffic

containing important information of forensic relevance, such as

SMTP client configuration, ladder logic program, and other

system and network configurations. We further classify these

file types according to their content.

We develop a network forensic tool, cutter, that is able to

extract forensic artifacts (or files of different types) from a PCCC

network traffic log, and further parse them to extract informa-

tion and present it in human readable form.

¢ We demonstrate the effectiveness of cutter in two distinct
scenarios: 1) detections of malicious control logic injection; and
2) detection of a compromised SMTP configuration.

The rest of the paper is organized as follows: Section Control
logic transfer via PCCC presents a detailed analysis of the
control logic transfer via the PCCC protocol. Section
Implementation presents the implementation details of the cut-
ter prototype tool, followed by Section Evaluation with the eval-
uation results. Section Related work presents the related work
followed by a conclusion in Section Conclusion.

Control logic transfer via PCCC

We first analyze the transfer process of a control logic to a PLC
using PCCC protocol, with the goal of identifying the relevant
forensic traces in the network traffic log.

PCCC protocol. The PCCC is a command/reply protocol that
provides several operational functions, such as diagnostic status,
change mode, and echo. It is supported by many popular PLCs
including PLC-5, SLC500, and Logix family (such as Micrologix and
Controllogix). The PCCC message is transported as an embedded
object in EtherNet/IP (EIP) protocol, which is an adaption of com-
mon industrial protocol (CIP) over Ethernet.

Analysis of PCCC network traffic

Unfortunately, common network analysis tools, such as Wire-
shark, do not support PCCC protocol. There is a vendor document
that describes the format of PCCC message; however, it is valid
when the PCCC is used with DF1 link layer protocol (or for serial
communication) (Allen Bradley's, 2017). As it turns out, the format
is not completely aligned with the traffic observed over Ethernet.
The focus of our research is to develop a forensic tool for Ethernet
and IP infrastructure. Our lab has a licensed software, NetDecoder
(NetDecoder) commonly used in the industry for debugging. Net-
Decoder supports PCCC and can parse its messages. We use it to
understand the fields of a PCCC message and the messages
involving in the transfer of control logic.

Data collection. We use the Allen Bradley Micrologix 1400
PLC that supports PCCC protocol, and the RSLogix programming
software to create a control logic program and transfer it to the PLC.
The software is installed in a Windows 7 computer, which is
directly connected to the PLC. We use NetDecoder to capture the
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network traffic in promiscuous mode for analysis.

PCCC Message Fields. Table 1 lists the name and the size of the
fields of a PCCC message over Ethernet. The first three fields
represent requestor identification for Execute pccc service used
to process PCCC commands; the fields are Requestor ID, Vendor ID
and Serial Number.

The rest of the fields are cMD, sTS, TNSW, FNC, and PCCC data
related to FNC that is analogous to operand and opcode in assembly
languages, respectively. cMD contains code for command type, and
FNC is a specific function under a command type. In some cases,
cMD does not have FNC such as 0x01 for unprotected read, and
0x08 for unprotected write. STS (1-byte) is a status field. A request
message always has 0x00 STS value. TNSW is a (2-byte) transaction
identifier. Request and corresponding reply messages share a same
TNSwW value. PCCC data is optional depending on FNC code. For
instance, FNC code 0x03 request diagnostic status to the PLC and
does not require any PCCC data. Table 2 lists cMD and FNC codes that
are pertinent to our analysis.

Change of Operational Mode. A PLC supports different modes
of operation such as PROGRAM, RUN and TEST (Swainston, 1991).
When a PLC is operating in RUN mode, the physical input, output,
and program logic are scanned continuously in a defined rate to
control its respective physical process. In the PROGRAM, PLC stops
executing the program logic and disables the scanning or modifying
of the state of output ports. In the TEST mode, the program is
executed but does not affect the output ports.

Our next observation is that, in order to transfer a control logic
to/from the PLC, the programming software changes the mode of
the PLC from RUN to PROGRAM mode. When the transfer is
completed, the mode is switched back to RUN. FNC code 0x80 is
used to change the mode of PLC to PROGRAM, RUN, or TEST. It only
requires one field in PCCC data to mention the code of the mode to
change. We find that 0x01 and 0x06 are used for PROGRAM and RUN
modes respectively. The mode-change is particularly useful to
delimit the start and end of a logic transfer. Clearly, it could also be
used as an indication of logic transfer, however, more scrutiny is
required for a forensic evidence since it is possible to switch the
modes without transferring any logic.

Control Logic Program. PLC logic programs are written using
the programming languages defined in TEC 61131-3 (IEC61131-3,
2013), such as Ladder Logic, and Instruction List. RSLogix supports
only Ladder Logic programming. To download a control logic to a
PLC, RSLogix writes to the PLC. Similarly, it reads from the PLC to
upload a logic. In PCCC protocol, FNC code 0xaA2 and 0xaa are used
for reading from and writing to a PLC respectively. These FNC codes
require multiple fields in PCCC data to be properly set, file type and
file number (Table 3).

Both downloading and uploading processes involves transfer of
multiple files of different types, such as low-level representation of
ladder logic, counter, timer, and configuration files. As already
mentioned, the compilation of ladder logic program does not pro-
duce local output on the engineering workstation. However, when

Table 1

Description of the fields of PCCC message.
Field Name Size (bytes) Description
Requestor ID 1 Requestor ID
Vendor ID 2 Vendor ID
Serial Number 4 Serial Number
CMD 1 Command Code
STS 1 Status
TNSW 2 Transaction ID
FNC 1 Function code
PCCC Data Variable Data relevant to FNC

Table 2
Command and function codes.
Command Function Description
Code Code
0xOF 0x80 Change Mode
0xOF 0xAA Protected typed logical write with
three
address fields
0xOF 0xA2 Protected typed logical read with three
address fields
0xOF 0x8F Apply Port Configuration
0x06 0x03 Diagnostic Status
0xOF 0x52 Download Completed
0x06 0x00 Echo
0xOF 0x11 Get edit resource
0xOF 0x12 Return edit resource

the program is downloaded/uploaded to/from the PLC, we analyze
the file type field in the messages and find that almost 30 types of
files are transferred to the PLC.

Unfortunately, most of these file types (including ladder logic)
are not publicly documented (Table 4). The known file types are
described in (Allen Bradley's, 2017), and contain the data on input/

Table 3
Sub-fields of PCCC data field for FNC code 0xa2 and 0xAA to read from and write to a
PLC.

Field Name Size (bytes) Description
Byte Size 1 Number of bytes to read/write
File Number 1 File ID
File Type 1 Represent the file content
Element No. 1 Elements within a file

1

Sub-element No. Sub-elements within an element

Table 4
Association of file-types and their respective codes
mentioned in the vendor's manual (Allen Bradley's,
2017).

File Type Description

0x03

0x22

0x24

0x47

0x49

0x4C

0x4D

0x60

0x69

0x91 Unknown Types
0x92

0x93

0x94

0x95

0x96

0xA1

0xA2

0xEO

O0XED

0x82 Output
0x83 Input
0x84 Status
0x85 Binary bit
0x86 Timer
0x87 Counter
0x88 Control bit
0x89 Integer
0x8A Floating point
0x8E ASCIl
0x8D String
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output physical ports, and the data in-use by the program logic
such as timer, and counter.

Analysis of unknown file types

The goal of this section is to analyze and document the files of
unknown type (Table 4) based on their contents.

Differential Analysis. The approach we took to classify the files
of unknown types is differential analysis (Garfinkel et al., 2012).
First, we create a baseline where the traffic of a program being
transferred is captured and then, processed to extract files. In the
next iteration, we make only one change either in ladder logic,
configuration, or data in the RSLogix programming software and
then, transfer the whole program to the PLC again while capturing
the traffic. We extract the files again from the network traffic and
compare them with the baseline files using di £ £ utility from GNU
Diffutils (GNU Diffutils, 2017). The file that has been changed
should have been identified when comparing with its corre-
sponding baseline file, and the rest of the files should be the same.

Test Cases. We apply our approach to several test cases
composed of making changes in many different types of configu-
ration options and data values in RSLogix such as configuration of IP
address, enabling DHCP service, name of the processor, and the
data values in input, output, timer, counter etc.

Table 5 presents some examples of the test cases. It shows the
complete path of a value that is modified along with the original
and modified values. In some cases, the original values do not exist
because they are generating new information such as creating new
data file. Also, sometimes a single change may alter multiple files of
different file types. For example, when a ladder rung is added to an
existing program, we notice the change into the following three file
types: 0x03, 0x24, and 0x22.

Results. Table 6 presents the results of our findings; file type
0x22 contains low-level representation of ladder logic, while the
0x47, 0x49, 0x4C and 0x4D contain system configurations. For
instance, 0x4cC stores email server name/IP, and user authentica-
tion details (i.e. username and password). Our further analysis
shows that these details are transferred as plain text over the
network, and thus, are prone to eavesdropping.

Parsing of the files

To create a parsing tool for the extracted files, we further use
differential analysis to examine the file contents closely and

Table 5
Example test-cases for file type classification.

Table 6
Classification of unknown file types.

File Type Classification (based-on content)
0x22 Ladder Logic - Control Logic Program
0x47 DF1 (channel 0) Configuration
0x49 Ethernet Configuration

0x4D DNP3 Configuration

0x4C SMTP Configuration

0x92 Message

0x93 PID

0x94 Programmable Limit Switch
0x95 Routing Information

0x96 Extended Routing Information

identify how the contents are organized in the files. With respect to
file size, data files vary significantly from 2 bytes to 512 bytes, while
the configuration files always have a fixed size. Table 7 shows the
observed average file sizes of different types.

Main Configuration File. The file type 0x03 is the main
configuration file containing information about the other files be-
ing transferred to a PLC. Fig. 1 presents (in hexadecimal) the content
of an example configuration file. The first two bytes provide the
length of the configuration, followed by the PLC processor name
(UNTITLED in this case) and the information about ladder file 0x22,
other configuration files such as 0x49, 0x4C, 0x4D, 0x47 and the
data files.

A 10-byte structure stores information about each file. The first
2-bytes identify the file type, such as 0x82, 0x83, 0x84, and
0x85; the third and fourth bytes give the size of the file, followed by
two bytes containing the starting offset of the file used with the
ladder logic instructions in the file 0x22. The remaining bytes 7—10
are filled with zeroes.

SMTP File. The file type 0x4c is the SMTP configuration file;
Fig. 2 shows an example SMTP file, which has a fixed size of 1800
bytes. The first 16 bytes contain the signature bits followed by
fourteen 64-byte fields. Each field is organized into two sub-fields:
length and data. The length field consists of two bytes containing
the size of the data in the data field. Since the data in the data field
may vary, the record is padded with zeros. The SMTP fields appear
in the following sequence in the file: Username, Password, SMTP
Server, From Address, and 10 To Address fields.

Data Files. Several data files are transferred while uploading/
downloading a logic program. Fig. 3 shows the content of an
example Binary file with a type of 0x85; it has 12 elements from

Test Cases

Classified File-type

Data Path

Original Data Value Modified Data Value

Data Files/New/select Type:Binary

Data Files/New/select Type:Integer

Data Files/New/select Type:Long

Data Files/New/select Type:Message

Data Files/New/select Type:PID

Data Files/New/select Type:Programmable Limit Switch

Data Files/New/select Type:Routing Information

Data Files/New/select Type:Extended Routing Information

Controller/Channel Configuration/Channel 1 (tab)/DNP3 over IP Enable (Checkbox)

Controller/Channel Configuration/Channel O (tab)/Driver(drop down menu)

Controller/Channel Configuration/Channel 1 (tab)/SMTP Client Enable
(Checkbox)/Chan. 1 SMTP

Controller/Channel Configuration/Channel 1 (tab)/Modbus TCP Enable (Checkbox)

Controller/Channel Configuration/Channel 1 - Modbus (tab)/Coils

Controller/Channel Configuration/Channel 1 (tab)/SNMP Server Enable (Checkbox)

Add New Rung in Ladder Logic (LAD)

Program Files/New/Create Program File

- New file B9 0x85
- New file N10 0x89
— New file L11 0x91
- New file MSG12 0x92
— New file PI13 0x93
- New file PLS14 0x94
— New file RI 0x95
— New file RIX 0x96
Unchecked Checked 0x4D
DF1 Full Duplex Shutdown 0x47
- SMTP Configuration 0x4C
Unchecked Checked 0x49
0 3 0x49
Unchecked Checked 0x49
1:0/0 and 0:0/0 New Timer (T4) 0x03, 0x24, 0x22
- New File Number 0x22
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Table 7
Average size of the files (in Bytes) captured during the control logic transfer.

File Type Description Average Size
in bytes

0x22 Ladder Logic 90

0x47 DF1 (channel 0) Configuration 180

0x49 Ethernet Configuration 532

0x4D DNP3 Configuration 204

0x4C SMTP Configuration 1800

Data Files Input, Output, Timer, Counter, 2 to 512 bytes

Integer, Status etc.

(B3:0/1 to B3:0/11). Similarly, Fig. 4 shows the content of an Integer
file: its type is 0x89, and has ten elements from N7:0/1 to N7:0/9.

Fig. 5 shows an example Timer file, type 0x86. The file contains
4 timers; each timer is configured with the parameters, Base, Preset
(Pre), and Accumulator (ACC).

0000000£
0000001e
0000002d
0000003c
0000004b
0000005a
00000069
00000078
00000087

00
00
00
05
00
00
03
00
22

00
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file:00-Type:03 X Length of the Configuration File
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00
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« Start of 10-byte tuples;
( each tuple represents a file
00 00
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00
8B
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~n

S61
Implementation

Based on our findings in the last section, we built a prototype
tool cutter to extract digital artifacts from a PCCC network traffic
log. The tool is implemented in Python using the PyShark package,
which allows the use of Wireshark dissectors for decoding packet
content. The tool consists of five functional modules: parsing of
PCCC messages, identification of the boundary of a logic transfer,
message filtering, reassembling of the messages into files, and
analyzing/parsing files to extract information. The tool will be
available at (Cutter Tool, 2017).

PCCC message parsing. The PCCC message is located at the
application layer in TCP/IP stack along with EtherNet/IP and CIP
headers. In order to reach to the PCCC message content, the tool
skips the packet headers of lower layers and the EtherNet/IP and
CIP headers in the application layer. Since Wireshark lacks the
dissector for PCCC, the tool implements its own parser to process
the PCCC message contents.
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Fig. 1.

Configuration file field format.
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Fig. 2.

SMTP field format.
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file:03-Type:85 x/ B3:0
00000000 01 00|00 8O|....
00000004 |00 40 00 20|.@.
00000008 (00 10 00 08f....
0000000c (00 04 00 02f....
0000001000 01 80 00f....
00000014 (40 00|20 oofe. .
00000018 || _ — B3.11

Fig. 3. Binary file - Hex format.

file:07-Type:89 X L N7:0/1
00000000 |00 OO |02 0O
ooo00004 1|22 00 02 OO0 |"™...
oooooo08|05 00 00 OO0} ....
0000000c |04 OO0 10 00]....
000000101|10 OO |08 O0O0F....

00000014 ||__ L N7:0/9

Fig. 4. Integer file - Hex format.

file:04-Type:86 X

00000000 [00 0 [03 00][00 00| tao |-
00000006 Joo 0o |05 ool |oo oof|[ tes |-
0000000c J00 01]|0o2 oof|oo oof|[ _raz |
00000012 Joo c2|o1 ool |oo oof|[ a3 |
00000018

| Base _ Pre __ Acc -

Fig. 5. Timer file - Hex format.

Identifying the boundary of control logic transfer. The tool
starts from the first packet in the network traffic log, and searches
for specific PCCC messages used for changing the mode of the PLC
from PROGRAM to RUN, and vice versa. Specifically, the PCCC uses
cMD code 0x0F, and FNC code 0x80 for changing the mode. The
first message during the search represents start of the transfer, and
the occurrence of the second message depicts end of the transfer.
Listing 1 presents the pseudocode for identifying the boundary of
logic transfer.

Message filtering. Within the boundary, a number of PCCC
messages exists that are irrelevant to the recovery of files. These are
mostly read and echo commands for retrieving updated data from
the PLC. The tool filters out these messages, and only focuses on the
messages that are writing to the PLC. Listing 2 presents the pseudo-
code of the filtering process. It shows that the packets starting with
the command code 0x0F, request message, are discarded, as are the
corresponding response messages (0x4F). 0x06 and 0x46 are echo
and echo response packets, respectively, and are also dismissed.

for j = 0 to req-pktcount do

if req-pkts[j][5] = 70x80” then
chng_mode_detect <— req_pkts[j][0]
end if
end for

Listing 1. Pseudocode of identification of boundary of logic
transfer.

for i = 0 to pktcount do

if allpkts[i][0] = ’0x0F’ then
req_pkts <— allpkts|[i]

else if allpkts[i][0] = ’0x4F’ then
res_pkts <— allpkts[i]

else if allpkts[i][0] == ’0x06’ then
echo_pkts <— allpkts[i]

else allpkts[i][0] = ’'0x46’ then
echo_res_pkts <— allpkts[i]

end if

end for

Listing 2. Pseudocode of packet filtering.

void print_details(req-pkt,res_pkt ,pkt_boundary,

filepath){

if req-pkt[5] = ”0xAA” then

filename = filepath+”/download—"+
str (pkt_-boundary )+
str(req-pkt [7])+’—Type: "+
str(req-pkt [8])

if not path_exists(filename) then

makedirectory (filename)
end if
end if

with open (filename , ’append’)
for buffer in req-pkt[11:]
filename . write (buffer .decode( "hex’))
end for

Listing 3. Pseudocode of assembling of packets into files.

Assembling of packets into files. cutter considers the packets
for further processing that has cMp code 0x0F, and FNC code 0xaa
and are used for (protected-typed logical) write operations. The file
type and file number fields are used to represent a unique file for
writing. cutter uses these fields to assemble the data into their
respective files. While processing the packets, when cutter finds a
new combination, it creates a new file on disk with the name con-
taining file type and number. If the tool encounters a packet for a file
already existed, it appends the packet contents in the relevant file on
disk. Listing 3 presents the pseudocode of the assembling process.

Analyzing files to extract information. cut ter parses each file
and extract any useful information based on the analysis discussed
in the prior section.

Evaluation
Experimental settings

Fig. 6 illustrates the experimental environment. It consists of an
Allen Bradleys PLC, Micrologix 1400 series B, and four virtual
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Virtual Machines

Engineering
Workstation

N —

Programmable LEDs

Logic Controller

Security Monitoring

Attacker

... Hardware |
=TT T T T T oo oo oo |
| Toggle |
: Switches | \
: : and Buttons : %
| \ Ethernet
: : Switch
| |
| |
| |

Fig. 6. The experimental setup for the evaluation of cutter.

machines (VMs). The PLC has input and output physical ports. The
input ports connect with two push buttons and two toggle switches
to provide digital inputs to the PLC. The output ports are connected
with four different color LEDs: red, orange, green, and blue.

The PLC and the physical computer are connected via an
Ethernet switch. Two VMs are running SCADA services — human
machine interface software, and engineering workstation running
RSLogix. One of the VMs is for security monitoring and is running
Wireshark to capture all network traffic (in promiscuous mode);
the last VM is a simulated attacker's machine that can communi-
cate with the PLC and send messages to transfer logic program and
alter physical process state (LEDs in this case).

Table 8 shows the system configuration of VMs and host ma-
chine used in the evaluation.

Comparing two ladder-logic files

SCADA owners/operators can use Cutter to maintain baseline
original files, which can later be used to facilitate a forensic
investigation. For instance, if a an engineering workstation on
control network is compromised, and the PLC programming soft-
ware installed on it is used to modify the control-logic of a remote
PLC, the captured network traffic can be analyzed with cutter to
extract files, and compare them with the baseline files. Any devi-
ation can be used as potential indicator of compromise.

To evaluate this scenario, we create a legitimate control logic
program in RSLogix and transfer it to the PLC from the engineering
workstation while capturing the packets. cutter takes the

network log as an input and extracts the original files. Later, we
transfer a completely different control logic from an attacker's
machine to PLC, and capture the network traffic.

cutter analyzed the network traffic, extracted the files, and
then compared them with the baseline files obtained initially from
the normal network traffic. It correctly identified that files of types
0x03, 0x24, 0x02, 0x49, 0x83, 0x22, 0x84, and 0x86 has
been modified.

In other words, cutter is able to detect the attack effectively
by: a) identifying the transfer of control logic in the network traffic,
and b) showing the file differences with respect to the baseline
capture.

Comparing two SMTP files

We evaluate the cutter's parsing ability for an SMTP file. We
enable the SMTP option and transfer the program to the PLC and
capture the network traffic. The evaluation results are tabulated in
Table 9. It shows that cutter is able to parse the SMTP file
accurately.

We further use the cutter to compare two similar SMTP files in
a scenario where an attacker adds his email address in the SMTP
configuration and download it to the PLC. As a result, the PLC starts
sending email notifications to the attacker.

To create the scenario, we modify the SMTP configuration, add a
different email address, and transfer the program to the PLC. While
transferring the configuration to the PLC, the network packets are
captured and processed by cut ter. By comparing the SMTP entries

Machine Type Bits/Cores/RAM/HDD

Table 8
System Configuration of virtual machines (VM) and host physical machine used in evaluation.
System [N
Host Machine Win 10
Engineering Workstation Lubuntu
Security Monitoring Win 7

Physical Machine 64Bit/4/8GB/420GB
VM for Cutter and Wireshark 64Bit/1/4GB/50GB
VM for RSLogix 64Bit/4/2GB/40GB
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Table 9
Accuracy of cutter for parsing an SMTP file.

Field Name Given Value Parsed Correctly?
Email Server smtp.gmail.com Yes
From Address saranprojecttest@gmail.com Yes
Username saranprojecttest@gmail.com Yes
Password [ Yes
To Address[0] xyztest@gmail.com Yes
To Address[1] somebigemailaddress@gmail.com Yes
To Address[2] someducationinstitueaddress@uno.edu Yes
To Address|[3] testuno@uno.edu Yes
To Address[4] testsyahoo@yahoo.co.us Yes
To Address|[5] thesmallemail@hotmail.com Yes
To Address[6] test1@aol.com Yes
To Address[7] test2@drmcet.ac.in Yes
To Address[8] test2scada@gmail.com Yes
To Address[9] tester@outlook.com Yes

with original baseline entries, we are able to identify the different
(suspicious) email entry in SMTP configuration file.

Performance Evaluation

This section discusses the processing speed, CPU and memory
usage of cutter. Fig. 7a, b, 7c, and 7d present the evaluation re-
sults. The packets are captured while transferring a logic program
to the PLC. Multiple network dumps are created with increasing
number of control logic programs to be transferred to the PLC.

cutter takes around three to eight seconds to process a network
capture of size around 100—450 kilobytes. Also, Cutter is not a
resource-intensive tool, which has a small memory footprint and
consumes around 15—60% CPU. It is worth mentioning that the cur-
rent implementation of cutter does not support multi-threading,
and thus, the performance of cut ter can further be improved.

Related work

As early as 2006, Igure et al. (2006) analyzed the emergent
landscape of security challenges for SCADA systems in the face of
accelerating integration with TCP/IP networks: a) access control—it
is difficult to enforce define and enforce access control policies for
resource-constrained devices; b) firewalls and IDS—developing
protocol-aware firewall and IDS rules requires detailed knowledge
of the operation and vulnerabilities of the protocol; c¢) protocol
vulnerability assessment requires scarce domain knowledge and
judgement; d) cryptography and key management—it is a challenge
to reconcile the use of strong cryptographic mechanisms with the
overriding safety priority of SCADA devices; e) device and OS
security—the limited capabilities of the employed hardware make it
inherently less capable of handling denial-of-service attacks that
can have catastrophic consequences; f) security manage-
ment—SCADA systems tend to have a much longer (15—20 year) life
cycle, which makes it challenging to maintain up-to-date firmware,
especially for devices no longer in production.

The Distributed Network Protocol (DNP3) is the predominant
SCADA protocol in the North American energy sector and is in used
by more than 75% of utilities. East et al. (2009) provide a detailed
analysis of the DNP3 protocol layers with respect to threats and
targets, and identifies 28 attacks and 91 attack instances. The ef-
fects of the attacks range from obtaining network or device
configuration data to corrupting outstation devices and seizing
control of the master unit. The developed taxonomy considers at-
tacks that are common to the three layers common to all imple-
mentations—the data link, pseudo-transport, and application. The
impact of the attacks can be loss of confidentiality, loss of aware-
ness, and loss of control.

The Modbus family of protocols is widely used in industrial
control applications, especially for pipeline operations in the oil

Cutter Memory Usage (%age)
wn
<

1 2 3 4 5 6
Number of Control Logic Transfers in a Log

Cutter CPU Usage (Yoage)
Wi
<

1 2 3 4 5 6
Number of Control Logic Transfers in a Log

(a) Memory usage of Cutter when processing
network packet capture files containing different
number of logic-program transfers.

(b) CPU usage of Cutter when processing net-
work packet capture files containing different
number of logic-program transfers.
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(d) Size of network packet capture files contain-
ing different number of logic-program transfers.

Fig. 7. Performance evaluation of cutter.
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and gas sector. Modbus defines the message structure and
communication rules used by process control systems to exchange
SCADA information for operating and controlling industrial pro-
cesses (Huitsing et al., 2008) built an attack taxonomy and, similar
to (East et al., 2009), classify the impact into loss of confidentiality/
awareness/control. In particular, the authors developed 20 distinct
attacks against the Modbus serial variant of the protocol, and 28
distinct attacks against the Modbus TCP version.

Kleinmann and Wool (2014) present a DFA (Deterministic Finite
Automaton) based intrusion detection system for the network
traffic of S7comm (S7 Communication). S7comm (S7comm wire-
shark dissector plugin) is a proprietary protocol for Siemens S7-
300/400 family. The IDS is designed based on the observation
that S7 traffic that is coming to/from a PLC is highly periodic. It
achieves the accuracy of 99.26%.

Wireshark (Wireshark (2017) is the leading tools for interactive
network packet analysis. It can parse packets from numerous
network protocols and can reconstruct protocol conversations,
such as TCP streams. The data can be viewed in variety of formats
like ASCII, EBCDIC, HEX Dump, C Arrays and Raw.

For industrial networks, NetDecoder (NetDecoder) is among the
most popular analytical tools. It is designed to diagnose and trou-
bleshoot communication problems in industrial Networks. Some of
the Ethernet protocols supported by NetDecoder are Modbus/TCP,
EtherNet/IP (CIP and PCCC) (EtherNet/IP, 2017), Allen-Bradleys CSP/
PCCC, DNP3 over Ethernet (DNP3), IEC 60870-5-104 (IEC 611313,
2013), PROFINET (PROFINET), CC-Link IE.

Conclusion

In this work, we presented a detailed analysis of the PCCC
protocol employed by SCADA networks. Prior to this effort, only
partial information was made available by the vendors, which was
insufficient to build meaningful security and forensics applications.
Starting with incomplete information, we systematically applied a
differential analysis technique to reverse engineer the structure
and format of the protocol messages to the point where useful
information can be extracted from the network capture. Specif-
ically, our proof-of-concept tool, Cutter, can parse the content of
PCCC messages, extract digital artifacts and present them in
human-readable form such as SMTP configuration. The evaluation
results show that cutter is useful in identifying any transfer of
control logic to the PLCs, extract and store digital artifacts into files
on disk and compare them from previously-stored normal files.
cutter is lightweight that does not require significant memory
and CPU to work effectively.
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