
Using Virtual Machine Introspection for Operating Systems
Security Education

Manish Bha�
University of New Orleans

mbha�@uno.edu

Irfan Ahmed
University of New Orleans

irfan@cs.uno.edu

Zhiqiang Lin
�e Ohio State University

lin.3021@osu.edu

ABSTRACT
Historically, hands-on cybersecurity exercises helped reinforce the
basic cybersecurity concepts. However, most of them focused on
the user level a�acks and defenses and did not provide a convenient
way of studying the kernel level security. Since OS kernels provide
foundations for applications, any compromise to OS kernels will
lead to a computer that cannot be trusted. Moreover, there has
been a great interest in using virtualization to pro�le, characterize,
and observe kernel events including security incidents. Virtual
Machine Introspection (VMI) is a technique that has been deeply
investigated in intrusion detection, malware analysis, and memory
forensics. Inspired by the great success of VMI, we used it to de-
velop hands-on labs for teaching kernel level security. In this work,
we present three VMI-based labs on (1) stack-based bu�er over-
�ow, (2) direct kernel object manipulation (DKOM), and (3) kernel
integrity checker which have been made available online. �en,
we analyze the di�erences in approaches taken by VMI-based labs
and traditional labs and conclude that VMI-based labs are be�er
as opposed to traditional labs from a teaching standpoint because
they provide more visibility than the traditional labs and superior
ability to manipulate kernel memory which provides more insight
into kernel security concepts.
ACM Reference format:
Manish Bha�, Irfan Ahmed, and Zhiqiang Lin. 2018. Using Virtual Machine
Introspection for Operating Systems Security Education. In Proceedings of
SIGCSE’18, February 21–24, 2018, Baltimore, MD, USA, SIGCSE ’18: �e 49th
ACM Technical Symposium on Computing Science Education, 6 pages. DOI:
https://doi.org/10.1145/3159450.3159606

1 INTRODUCTION
�e hands-on cybersecurity exercises have always helped students
reinforce the core concepts of cybera�acks and defenses. �ey
typically involve running malware, exploits, and/or security tools
on machines to generate or thwart local/remote cybera�acks. Un-
fortunately, the traditional hands-on exercises fail to provide a deep
understanding of cybera�acks, and are mostly limited to teach the
execution steps of the a�acks. For instance, the Zeus bot injects
an executable in svchost.exe in MS Windows. When students
perform the hands-on exercise that requires them to infect a benign
machine with Zeus bot executable, the changes in the memory
(made by the bot) are mostly not transparent to students. �ese

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE’18, February 21–24, 2018, Baltimore, MD, USA
© 2018 ACM. ISBN 978-1-4503-5103-4/18/02. . . $15.00
DOI: https://doi.org/10.1145/3159450.3159606

changes are essential to understanding the underlying concept of
the Zeus bot infection.

To address this problem, we propose to adopt and utilize vir-
tual machine introspection (VMI) [14] (currently o�ered by many
popular hypervisors such as Xen, and KVM) for developing more
e�ective hands-on exercises (than traditional approaches). In a
virtualized environment, VMI with the help of a hypervisor allows
a privileged host to examine and directly modify the physical mem-
ory and hard disk content of a guest virtual machine (VM) from
outside the VM.

Our approach uses VMI to eliminate unnecessary abstraction in
the hands-on exercises by le�ing students make the changes (such
as mentioned in the Zeus bot example) directly to the memory of
a VM via read/write memory operations, and more importantly,
observe their e�ect within or outside the VM. In particular, VMI is
useful to develop the challenging hands-on exercises on operating-
system (OS) kernel-level a�acks. For instance, an exercise may
involve loading a malicious kernel module and then, observe its
impact on the infected computer system. VMI allows students to
experience su�cient low-level details of the target malicious func-
tionality of the module including the exploitation of the internals
of an OS kernel.

In this work, we develop three VMI-based hands-on exercises
and make them available on gitlab [3]. �e two exercises focus on
the techniques employed for a kernel a�ack (i.e., DKOM or direct
kernel object manipulation) and defense (i.e., kernel patch protec-
tion, a.k.a. PatchGuard). �e third exercise is on bu�er over�ow.
We present signi�cant implementation details of these exercises and
compare them with their respective traditional hands-on exercises
using four characteristics, i.e., completeness, �exibility, portability,
and creativity (previously identi�ed by Joyce et al. [18] for evaluat-
ing hands-on exercises). �e analysis results show that VMI-based
labs are be�er as opposed to traditional labs from a teaching stand-
point because they provide more visibility and superior access to
low-level details (such as the operating system internals) than the
traditional labs.

�e rest of the paper is organized as follows: Section 2 discusses
the related work. Section 3 presents a general framework for devel-
oping VMI-based hands-on exercises followed by the implementa-
tion of three VMI-based security labs in section 4. Section 5 presents
a comparative analysis between VMI and traditional hands-on ex-
ercises. Section 6 concludes the paper.

2 BACKGROUND/RELATEDWORK
Hypervisor or Virtual Machine Monitor (VMM) is the foundation of
the virtualization technology for system developers to achieve un-
precedented levels of security, reliability, and manageability mainly
because of their ability to package so�ware in a contained envi-
ronment, and also to shi� the state of a VM to outside VMM to
isolate the in-VM and the out-of-VM programs. In recent years,

VMMs have been widely adopted for intrusion detection, malware
analysis, memory forensics, and also for cybersecurity education-
particularly in virtualized computer labs.

2.1 Virtual Machine Introspection
Hypervisors were �rst introduced in the 1960s [23]. While this
computing model was originally designed to logically divide the
resources for time sharing of di�erent applications in mainframes,
it now underpins today’s cloud computing and data centers. In
addition to pushing computer paradigm for multi-tasking to multi-
OS, hypervisors also pushed system monitoring from traditional
in-VM monitoring to out-of-VM monitoring [2]. Because guest OSs
run on virtual resources [1] provided by the VMM, system designers
gain new opportunities for �exibility and control since VMM is
essentially a so�ware layer and so�ware is easy to monitor, migrate
and modify. �rough extracting and reconstructing the guest OS
states in the host, the out-of-VM instrumentation of the OS known
as VMI becomes possible which empowers the monitoring system
to control, isolate, interpose, inspect, secure and manage a VM
from the outside [6]. VMI based monitors, as opposed to traditional
in-VM monitors, have been widely adopted because they run at
higher privilege level and are isolated from a�acks in the guest
OSs they monitor and can trap all the guest OS events as they
are one layer below the guest OS. VMI has been widely used in
security applications ranging from read-only introspection [11, 14]
to writable recon�guration, repair and management [12, 13, 19],
passive intrusion detection [17] to active prevention [22] etc.

2.2 Virtualization in Education
Because of the e�cient support for scalability and diversity in a lab
infrastructure at a much lower cost, universities prefer virtual com-
puting labs to physical computing labs. For instance, Cavanagah
et. al. [5] used VMware ESXi to create a virtualized information
security laboratory mainly for the purpose of organizing Maine
Cyber Defence Competition using a Dell PowerEdge R610 machine
with Dual Xenon E5620 2.4 GHz processors, each with 12MB cache,
24GB RAM, and a 146GB RAID-con�gured storage system of 6
disks, and a quad-port Gigabit NIC which as opposed to creating a
Physical Lab. Nance et. al. [20] described virtual labs established
in Carnegie Mellon University(CMU) and the University of Alaska
Fairbanks using VMware server for packaging hands-on training
materials available on demand. Burd et. al.[4] described the vir-
tual lab in the University of New Mexico using VMware ESX and
VMware Lab Manager where the lab manager created and managed
con�gurations with required virtual machines to support speci�c
courses or lab exercises. Moreover, some universities such as the
United States Military Academy(USMA) and the University of New
Mexico(UNM) have converted their physical Windows XP labs to
virtual labs [4]. Hay et. al.[16] developed ASSERT using the univer-
sity’s surplus computers stored in a warehouse. Du et. al. developed
SEED (SEcurity EDucation) project [8, 9] for cybersecurity educa-
tion. �is project resulted in the development of over 30 SEED
labs to cover topics like vulnerabilities, a�acks, so�ware security,
system security, network security, web security, authentication,
cryptography, etc.

In summary, the primary use of virtualization has been to pack-
age labs. To the best of our knowledge, VMI has never been explored
for cybersecurity education. �is paper is the �rst e�ort to use the

Identify Target Concept(s)

Memory

Observation

Run Outside Guest VM

Memory

Manipulation

Identify Relevant Code/Data

Structures in Memory

Run Tools to observe

Events/Behavior in a

Target Guest VM

Read Memory

Contents of a

Target Guest VM

Write to Memory

Contents of a

Target Guest VM

Run

Malware/

Exploit

VMI T
ools VMI Tools

Run Inside Guest VM Run Inside Guest VM

Task B Task C Task D Task E

Run

Vulnerable

Software

Task A

Figure 1: Framework for developing a VMI-based cyberse-
curity lab exercise. A task is run either inside or outside a
target guest VM. Outside tasks are executed via VMI. Only
relevant tasks are included in a lab exercise and can be exe-
cuted in any de�ned order.

capabilities provided by VMI for improving the pedagogical e�orts
and instruction in cybersecurity education.

3 FRAMEWORK FOR DEVELOPING VMI LABS
In �gure 1, we present a generalized framework for developing a
VMI-based security lab. It consists of two main components: mem-
ory manipulation, and memory observation. Memory manipulation
refers to the tools and techniques that change the contents of the
memory actively when they are run, while memory observation
monitors memory contents passively.

To develop a VMI lab exercise, a target concept is identi�ed and
further elaborated and broken down into tasks to comprehend a
complete kernel security concept. Each task primarily must be
either for memory manipulation or memory observation and can
be implemented as one of the �ve task categories described at the
lowest level of the framework. Tasks C and D implement tools that
use VMI to write to and read from the memory from outside a target
guest VM. �e tools need to locate the pertinent memory locations
containing target code and data structures for a lab exercise. We
address this problem in two ways: �rst by using a debugger in a
target guest VM; second by using the tools provided with a VMI
library.

Tasks A, B, and E do not use VMI, execute directly inside a guest
VM, and are included in the framework to provide �exibility of
incorporating standard tools and techniques in a hands-on exercise.
Tasks A and B run benign (potentially vulnerable) so�ware, and
malware in a guest VM respectively. �ey are placed under memory
manipulation component and are useful to directly involve a target
so�ware in an exercise. For instance, a Zeus bot executable is run
in a benign VM, and its changes (infection) are observed using a
VMI tool (in Task D) from outside the VM.

On the contrary, Task E runs tools (such as debugger and OS
utilities) in a guest VM to observe its events and behavior. For
instance, a VMI tool (in Task C) mimics a rootkit functionality and

alters the memory contents of a guest VM accordingly. �e impact
of the changes is observed inside the target guest VM using the
standard monitoring tools in Task E.

It is worth mentioning that since our focus is to leverage VMI
capabilities, it is essential that a hands-on exercise must include at
least one of the Tasks C and D containing VMI tools. Otherwise, the
hands-on exercise would be closer to traditional hands-on approach.

4 VMI-BASED HANDS-ON EXERCISES
We developed three VMI-based cybersecurity lab exercises; one is
on bu�er over�ow (a user-land a�ack), and the other two are on
1) direct kernel object manipulation (a kernel-land a�ack), and 2)
Kernel patch protection a.k.a., PatchGuard (a kernel-land defence),
introduced by Microso� in Windows OS to check the integrity of
kernel code and critical data structures. �e exercises are publicly
available at gitlab [3]; each includes a comprehensive tutorial.
Lab Setup. �e exercises are developed and tested on a desktop
computer running a Ubuntu 16.04 facilitated XEN-hypervisor 4.6.5.
A target VM running 64-bit MS Windows 7 is instantiated. For VMI
support, LibVMI [21] library is installed at the host OS, Ubuntu.
�e VMI tools created for the exercises run on the host OS and use
LibVMI to access the RAM content of the target VM from outside.

�is section presents both traditional and VMI-based approaches
for the exercises and further describes their shortcomings and ad-
vantages.

4.1 Stack-based Bu�er Over�ow Lab
�e objective of the lab is to make students acquainted with a pop-
ular user-mode a�ack known as stack-based bu�er over�ow. �e
main target concept for the exercise is that the a�ack modi�es the
return instruction pointer in a stack-frame to redirect the system
control �ow to an unexpected (potentially malicious) code.

4.1.1 Traditional Bu�er Overflow Labs. In a normal program
execution, when a function is called, the pointer to the next instruc-
tion (a.k.a return instruction pointer) is stored in a stack frame along
with any arguments. A local bu�er that stores user input is also
located in the frame. If a program has bu�er over�ow vulnerability,
it accepts more user input than the bu�er size. An a�acker exploits
the vulnerability to overwrite the pointer to make the program
jump to the a�acker’s intended location in the memory. Figure2
shows the state of the stack before and a�er the bu�er over�ow
exploitation.

For a typical lab exercise, students are provided with a vulnerable
program and a well-cra�ed input string that exploits the vulnera-
bility to redirect the system control �ow to some other function
in the program. To perform the exercise, the students provide the
input string to the program and observe the output generated from
the redirected function.

�e exercise is su�cient to demonstrate that a bu�er over�ow
vulnerability can be exploited. However, the students do not directly
experience the modi�cation of the pointer.

4.1.2 VMI-based Bu�er Overflow Lab. In our VMI-based exer-
cise, students observe the current value of the return address in the
stack and can directly modify it to another function pointer and
then, observe the change in the vulnerable program behavior.

�e whole exercise comprises of the following tasks; each is
derived from the framework (refer to Section 3).

[BUF]
Saved Frame Pointer
Return Address
Argument 1
Argument 2
Argument 3

[NOP Sled + Shellcode]
[Shellcode]
[Address of Shellcode]
Argument 1
Argument 2
Argument 3

a) Before Buffer Overflow Attack
Higher Memory Addresses

Lower Memory Addresses

b) After Buffer Overflow Attack

Top of Stack

Figure 2: Program stack, before and a�er bu�er over�ow at-
tack

(Task A). �is task consists of a vulnerable C program consist-
ing of three functions, viz. main(), vulnerable function(), and
not called(). �e vulnerable function is using strcpy func-
tion that has a bu�er over�ow vulnerability. �e not called func-
tion is using a system call to execute calc.exe to spawn a calculator.
(TaskD).�is task consists of a VMI program that reads the process
memory in the target VM, fetches the relevant stack frame contents
and displays them to the terminal. �e program enables the students
to observe the current value of the return address pointer when
needed.
(Task C). �is task consist of a VMI program that accesses the
location of the return address pointer and replaces it with the
address of the not called function. It causes the execution of the
program to be redirected to the not called function and pops open
a calculator.

�e program has to identify the address of the not called func-
tion, and the location of the return address on the stack. Since
the program runs outside the VM, it su�ers from the semantic gap
problem, which is the problem of extracting high-level semantic
information from low-level data sources like the OS memory[7].
To resolve this issue, we use GDB debugger and MinGW C compiler
running inside the target VM to leak the required information to
the VMI program.
Execution of the Tasks. Students begin with Task A and run the
vulnerable C program inside the target VM, followed by the Task
D to obtain the current value of the return address pointer. �en,
the students pause the vulnerable program and run Task C that
provides the address of the not called function that they are asked
to note down. Now, the students resume the vulnerable program
until the second pause to update the return address location on the
stack with the not called function address. Students, then, rerun
Task D to verify the modi�cation of the return address and then
execute the vulnerable program to completion. As opposed to what
the program was supposed to be doing, the students see that the
vulnerable program now spawns the calculator.

�e VMI exercise eliminates unnecessary abstractions by directly
focusing on the memory content, and provides be�er ability to ma-
nipulate the stack-space and memory as opposed to the traditional
bu�er over�ow exercise.

4.2 Direct Kernel Object Manipulation Lab
�e objective of the lab is to make students acquainted with the
Direct Kernel Object Manipulation (DKOM) a�ack. �e main target

(a) Active Process List entries in a normal state.

(b) Process 2 has been unhooked from the List.

Figure 3: Illustration of DKOM.

concept for the exercise is that the a�ack manipulates the doubly-
linked list of the processes (maintained by OS kernel) to hide a
target process from the list.

4.2.1 Traditional DKOM Lab. A typical hands-on exercise (in
MS Windows environment) involve spawning a notepad applica-
tion, for instance, using Windows Task Manager to verify that the
notepad process is present, and then running the FU rootkit to hide
the process and further observe that the notepad process becomes
hidden in Windows Task Manager. FU rootkit is a kernel module
that makes changes in the doubly-linked list to hide the target pro-
cess. Each node of the list is represented by the EPROCESS data
structure.

�e exercise is useful to demonstrate that the rootkits can hide OS
processes. However, students do not directly experience or observe
the state changes in the process list, which is key to understanding
the DKOM.

4.2.2 VMI-based DKOM Lab. In our VMI-based exercise, stu-
dents traverse the doubly-linked list of processes, observe the for-
ward and backward pointers in each node, and then perform DKOM
by directly manipulating these pointers to hide the target process.

We derive the following tasks from the framework described in
Section 3. �e whole exercise comprises of these tasks.
(Task A).�is task runs a notepad or a similar benign program.
(TaskD).MSWindowsmaintains the active process list in a doubly-
linked circular linked-list. Each process in the list has a link to
the next process, called forward link(Flink) and also a link to
the previous process, referred to as Blink. �is task consists of a
VMI program that traverses the list and displays the name of each
process, and its corresponding pointer values of Flink and Blink.
(Task C). �e task consists of a VMI program that takes in the
process id of the process the student wants to hide. �en, it iter-
ates through the active process list and �nds the process. Now,
the program creates references to the previous process and the
following process, and maps the Flink of the previous process to
the address in Flink of the current process and the Blink of the
previous process to the Blink of the current process as shown in
the Figure 3 and Algorithm 1.

Data: receivedPid
Result: process with receivedPid absent or unhooked
initialization;
while receivedPid not equals PidFromList do

Keep going to the next process;
if nextPid = receivedPid then

a = previousProcess;
b = nextProcess;
a.�ink = currentprocess.�ink;
b.blink = currentprocess.blink;
return unhooked;

else
go back to the beginning of current section;

end
return absent;

end
Algorithm 1: Algorithm to replicate DKOM functionality

(Task B).�is task runs FU rootkit inside a target VM running MS
Windows OS.
(Task E). �is task observes the list of processes inside the VM
using monitoring tools such as the Windows Task Manager and
tasklist.
Execution of the Tasks. Students begin with Task A to instantiate
the OS process of a benign program followed by Task D to go
through the process list and identify a target process and observe
the Flink and Blink pointers of the target process and its adjust
nodes. At this stage, students perform DKOM either via Task C or
Task B. Task C allows students to modify the pointer values in the
list via VMI directly. Task B runs FU rootkit and is useful to provide
experience with real malware. In either case, students perform Task
D to verify the intended modi�cations in the list. Task E can be
used to corroborate further that the target process is invisible to the
user applications in the target VM such as Windows Task Manager
or tasklist utilities.

4.3 Kernel Modules Integrity Checker Lab
�e objective of the lab is to make students acquainted with the func-
tionality of Kernel Patch Protection in MS Windows, also known
as PatchGuard.

�e main target concept for the exercise is that the kernel code
and critical data structures do not change once setup in the mem-
ory; at this stage, any changes in their memory content indicate
unwarranted and unsupported patching or hooking.

�e rationale behind PatchGuard is that some 32-bit device dri-
vers used to modify the behavior of Windows in unsupported ways.
For instance, they patch the system call table to intercept system
calls or patch the kernel image in memory to add functionality to
speci�c internal functions. To prevent these kinds of changes, MS
Windows introduced PatchGuard. Its job is to a�empt to deter com-
mon techniques for patching or hooking a system. �e components
that are protected by PatchGuard [25] include ntoskrnl.exe, global
descriptor table (GDT), interrupt descriptor table (IDT), and system
service descriptor table (SSDT) or syscall table.

Data: moduleName
Result: Is module compromised?
initialization;
dump all modules in ./original/ folder;
store names of all modules in module-list;
check initial integrity status of modules and store it in a �le;
pick a non-essential kernel module like srv2.sys;
modify n-bytes in memory for srv2.sys;
check integrity status again;
if status has changed then

use xen-hvmcrash utility to crash VM;
return module crashed;

else
return module not compromised;

end
Algorithm 2: Algorithm for Kernel Module Integrity Checker

�e PatchGuard computes and compares hashes of the kernel
code and data structures periodically. If any changes are detected, it
crashes the systemwith 0x109-CRITICAL-STRUCTURE-CORRUPTION.

4.3.1 Traditional PatchGuard Lab. Traditionally, PatchGuard
functionality was demonstrated to the students via writing a ker-
nel driver to make changes in SSDT/IDT on windows support-
ing PatchGuard. A�er computing the hash value, PatchGuard
would detect those changes and would crash the system with
CRITICAL-STRUCTURE-CORRUPTION exception, which is famously
known as the blue screen of death (BSoD). �is approach is useful
to demonstrate that the PatchGuard is functioning. However, it
provides no insight into its mechanism. Moreover, correctly exe-
cuting the lab required the knowledge of driver compilation and
initialization which strays away from the point.

4.3.2 VMI-based PatchGuard Lab. In our VMI-based exercise,
students replicate the PatchGuard functionality using VMI and ob-
serve that the kernel code and the data structures being monitored
do not change and that any a�empts to change them cause BSoD.
�e algorithm 2 shows the logic of the VMI program that replicates
PatchGuard.

We divide the whole exercise into tasks derived from the frame-
work described in Section 3.
(Task D).�is task consists of a VMI program that reads the whole
memory of a Kernel module, computes its hash value, dumps it in
a �le on disk.
(Task C). �is task comprises of a VMI program that alters the
memory content of a Kernel module.
Execution of the Tasks. Students begin with Task D. �ey pick
a non-essential kernel module, create its memory dumps across a
period of time, followed by Task C to make changes in the module
in memory. �e hash value will change a�er Task C. �e students
can also compute the md5sum of the memory dumps to verify that
the memory dump a�er Task C has di�erent hash value and thereby,
indicating a kernel compromise. At this stage, the students inten-
tionally crash the VM using a Xen utility, xen-hvmcrash.

�is lab demonstrated that students can play with the kernel
modules directly in the memory and view the e�ects of the changes
more e�ectively using VMI. Moreover, it excluded the need of the
student to learn about kernel drivers to understand the concept

of PatchGuard. Additionally, had the student made changes to an
essential kernel module such as hal.dll being monitored by Patch-
Guard, the environment would have crashed. However, since the
damage is encapsulated inside a VM, the environment can be reset
to a previous se�ing quite easily.

5 ANALYSIS OF THE EXERCISES
We use four characteristics of an e�ective cybersecurity to make
the comparison between traditional and VMI based lab exercises.
�e characteristics are completeness, �exibility, portability, and
creativity identi�ed by Joyce et al. [18]. In this section, we de�ne
what those features signify regarding hands-on security exercises
and use them to gauge VMI based kernel security labs against their
traditional counterparts.

5.1 Completeness
A hands on kernel security lab is complete if:

(1) It provides a complete picture of the mechanism of the
a�ack/defense.

(2) �e changes made in the kernel because of the a�ack/de-
fense is directly visible.

(3) the e�ect of the changes made in the kernel is visible.

Bu�er Over�ow Lab. Both the traditional and VMI bu�er over-
�ow labs provide a complete picture of the mechanism of a�ack,
provide the means to see the e�ect of those changes(by use of a
debugger and VMI program respectively) and provide means to
look at the e�ects of said changes.
DKOM Lab. Traditional DKOM lab, as opposed to VMI lab, is
limited because it does not provide a complete picture of the a�ack-
/defense and the changes made in the kernel aren’t directly visible.
�e student does not get to see what pointers are changed or what
the data structures look like.
PatchGuard Lab. Traditional PatchGuard lab performed in win-
dows 7 64 bit VM is performed by the Windows kernel itself, and
the traditional version does not provide any transparency at all.

5.2 Flexibility
Kernel security labs are �exible when the student can play with the
code without causing lasting damage to the environment. Tradition-
ally, all kernel security labs are executed and performed inside a
VM. Since they may manipulate the OS kernel of the VM, thus, can
crash. In this case, the students may loose their work or have to
reset the VM to start all over. It restricts student’s ability to play
with the code to observe the e�ects. VMI labs, on the other hand,
isolate any possible damage inside the encapsulated VM and the
VMI tools run outside the VM. Hence, VMI kernel security labs are
more �exible than traditional kernel security labs.

5.3 Portability
�e following criterion describes when kernel security labs are
portable: �e students can use the same set of programs in di�erent
computers with same or similar operating systems and similar envi-
ronments without recompilation. Both traditional labs and VMI labs
are C based and are not independent of the machines. Both of them
would need recompilation. Hence, neither traditional nor VMI labs
are portable.

Characteristics Traditional
vs. VMI Labs

Bu�er Over-
�ow Lab

DKOM
lab

PatchGuard
Lab

Completeness Traditional Lab X × ×
VMI Lab X X X

Flexibility Traditional Lab × × ×
VMI Lab X X X

Portability Traditional Lab × × ×
VMI Lab × × ×

Creativity Traditional Lab X X X
VMI Lab X X X

Table 1: Comparison between Traditional and VMI Cyberse-
curity labs using four characteristics i.e. completeness, �ex-
ibility, portability, and creativity

5.4 Creativity
Traditionally, kernel security labs have always stimulated creativity,
which refers to: the ability of the student/instructor to use same/sim-
ilar frameworks to come up with exercises or labs about other a�acks
and/or defenses.
Bu�er Over�ow Lab. Techniques used in bu�er over�ow can
also be used in heap over�ow exploit and in advanced exploits such
as ROP[24].
DKOM Lab. �e techniques used in DKOM are used in advanced
exploits such as evolutionary DKOM[15].
PatchGuard Lab. �e techniques used in Patchguard for comput-
ing hashes can be used in the labs such as digital signatures[10].
Hence, in general, both traditional and VMI labs stimulate creativ-
ity.

Table 1 presents the result of comparison of VMI based labs
against traditional labs. Here, we see that leveraging VMI in kernel
security labs has advantages on two fronts, i.e improvement of
completeness and �exibility of kernel security exercises. It provides
be�er visibility and ability to manipulate the guest OS memory
space, which decreases the abstraction warranted by traditional
exercises by a great deal.

6 CONCLUSION AND FUTURE PLANS
We demonstrated the use of VMI for developing labs successfully
by creating three kernel-security labs and making them available
online[3]. We then compared VMI-based approach against tradi-
tional approach for creating these three labs and found that VMI
provided more visibility to the kernel’s memory and allowed mod-
i�cation of the guest kernel with lot fewer restrictions than the
traditional approach. Hence, leveraging VMI to develop kernel se-
curity exercises is a superior approach to designing kernel security
labs from a teaching standpoint. We believe that educators and
students will bene�t from this approach. However, we see much
scope for future work and improvement.

Until now, we have developed three labs. Wewould like to extend
the idea of using VMI to more cybersecurity concepts such as return
oriented programming and in-memory fuzzing. Wewould also like to
solve the semantic gap problem by introducing some way to make
the labs OS agnostic. We would also like to conduct quantitative
studies a�er all labs have been completed to establish statistically
supported the e�cacy of VMI in kernel security education.

ACKNOWLEDGMENTS
�is work was supported by the NSF grant #1623276 and #1623325.

REFERENCES
[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pra�, and Andrew War�eld. 2003. Xen and the art of
virtualization. In ACM SIGOPS operating systems review, Vol. 37. ACM, 164–177.

[2] Erick Bauman, Gbadebo Ayoade, and Zhiqiang Lin. 2015. A Survey onHypervisor
Based Monitoring: Approaches, Applications, and Evolutions. Comput. Surveys
48, 1, Article 10 (Aug. 2015), 33 pages.

[3] Manish Bha�. 2017 (accessed August 18, 2017). VMI Exercises. h�ps://gitlab.com/
mbha�1/VMITool

[4] Stephen D Burd, Xin Luo, and Alessandro F Seazzu. 2013. Cloud-based virtual
computing laboratories. In System Sciences (HICSS), 2013 46th Hawaii International
Conference on. IEEE, 5079–5088.

[5] C Cavanagh and RAlbert. 2011. Goals, Models, and Progress towards Establishing
a Virtual Information Security Laboratory in Maine. In Proceedings of the SAM
‘11 Conference. 496–500.

[6] PeterMChen and Brian DNoble. 2001. When virtual is be�er than real [operating
system relocation to virtual machines]. In Hot Topics in Operating Systems, 2001.
Proceedings of the Eighth Workshop on. IEEE, 133–138.

[7] Brendan Dolan-Gavi�, Tim Leek, Michael Zhivich, Jonathon Gi�n, and Wenke
Lee. 2011. Virtuoso: Narrowing the semantic gap in virtual machine introspection.
In Security and Privacy (SP), 2011 IEEE Symposium on. IEEE, 297–312.

[8] Wenliang Du. 2011. SEED: hands-on lab exercises for computer security educa-
tion. IEEE Security & Privacy 9, 5 (2011), 70–73.

[9] Wenliang Du and Ronghua Wang. 2008. SEED: A suite of instructional labo-
ratories for computer security education. Journal on Educational Resources in
Computing (JERIC) 8, 1 (2008), 3.

[10] Shimon Even, Oded Goldreich, and Silvio Micali. 1989. On-line/o�-line digital
signatures. In Conference on the �eory and Application of Cryptology. Springer,
263–275.

[11] Yangchun Fu and Zhiqiang Lin. 2012. Space Traveling across VM: Automatically
Bridging the Semantic-Gap in Virtual Machine Introspection via Online Kernel
Data Redirection. In Proceedings of the 2012 IEEE Symposium on Security and
Privacy. San Francisco, CA.

[12] Yangchun Fu and Zhiqiang Lin. 2013. Exterior: Using a dual-vm based external
shell for guest-os introspection, con�guration, and recovery. ACM SIGPLAN
Notices 48, 7 (2013), 97–110.

[13] Yangchun Fu, Junyuan Zeng, and Zhiqiang Lin. 2014. HYPERSHELL: A Practical
Hypervisor Layer Guest OS Shell for Automated In-VMManagement.. In USENIX
Annual Technical Conference. 85–96.

[14] Tal Gar�nkel, Mendel Rosenblum, and others. 2003. A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection.. In Ndss, Vol. 3. 191–206.

[15] Mariano Graziano, Lorenzo Flore, Andrea Lanzi, and Davide Balzaro�i. 2016.
Subverting Operating System Properties �rough Evolutionary DKOM A�acks.
In Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
3–24.

[16] Brian Hay, Kara Nance, and C Hecker. 2006. Evolution of the ASSERT computer
security lab. In Proceedings of the 10th Colloquium for Information Systems Security
Education. Adelphi, MD.

[17] Ashlesha Joshi, Samuel T King, George W Dunlap, and Peter M Chen. 2005.
Detecting past and present intrusions through vulnerability-speci�c predicates.
In ACM SIGOPS Operating Systems Review, Vol. 39. ACM, 91–104.

[18] Daniel Joyce, Deborah Knox, Jill Gerhardt-Powals, Elliot Ko�man, Wolfgang
Kreuzer, Cary Laxer, Kenneth Loose, Erkki Sutinen, and R Alan Whitehurst.
1997. Developing laboratories for the SIGCSE computing laboratory repository:
guidelines, recommendations, and sample labs (report of the ITiCSE’97 working
group on designing laboratory materials for computing courses). In �e sup-
plemental proceedings of the conference on Integrating technology into computer
science education: working group reports and supplemental proceedings. ACM,
1–12.

[19] Zhiqiang Lin. 2013. Toward guest OS writable virtual machine introspection.
VMware Technical Journal 2, 2 (2013), 9–14.

[20] Kara Nance, Brian Hay, Ronald Dodge, James Wrubel, Steve Burd, and Alex
Seazzu. 2009. Replicating and sharing computer security laboratory environ-
ments. In System Sciences, 2009. HICSS’09. 42nd Hawaii International Conference
on. IEEE, 1–10.

[21] Bryan D Payne. 2011. LibVMI. Technical Report. Sandia National Laboratories.
[22] Bryan D Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. 2008. Lares:

An architecture for secure active monitoring using virtualization. In Security and
Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 233–247.

[23] Gerald J Popek and Robert P Goldberg. 1974. Formal requirements for virtualiz-
able third generation architectures. Commun. ACM 17, 7 (1974), 412–421.

[24] Marco Prandini and Marco Ramilli. 2012. Return-oriented programming. IEEE
Security & Privacy 10, 6 (2012), 84–87.

[25] Mark E Russinovich, David A Solomon, and Alex Ionescu. 2012. Windows
internals. Pearson Education.

https://gitlab.com/mbhatt1/VMITool
https://gitlab.com/mbhatt1/VMITool

	Abstract
	1 Introduction
	2 Background/Related Work
	2.1 Virtual Machine Introspection
	2.2 Virtualization in Education

	3 Framework for Developing VMI Labs
	4 VMI-based Hands-on Exercises
	4.1 Stack-based Buffer Overflow Lab
	4.2 Direct Kernel Object Manipulation Lab
	4.3 Kernel Modules Integrity Checker Lab

	5 Analysis of the Exercises
	5.1 Completeness
	5.2 Flexibility
	5.3 Portability
	5.4 Creativity

	6 Conclusion and Future Plans
	Acknowledgments
	References

