
Denial of Engineering Operations A�acks
in Industrial Control Systems

Saranyan Senthivel, Shrey Dhungana, Hyunguk Yoo, Irfan Ahmed, Vassil Roussev
Department of Computer Science, University of New Orleans

(ssenthiv,sdhunga2,hyoo1)@uno.edu,(irfan,vassil)@cs.uno.edu

ABSTRACT

We present a new type of attack termed denial of engineering op-

erations in which an attacker can interfere with the normal cycle

of an engineering operation leading to a loss of situational aware-

ness. Speci�cally, the attacker can deceive the engineering software

during attempts to retrieve the ladder logic program from a pro-

grammable logic controller (PLC) by manipulating the ladder logic

on the PLC, such that the software is unable to process it while

the PLC continues to execute it successfully. This attack vector can

provide su�cient cover for the attacker’s actual scenario to play

out while the owner tries to understand the problem and reestab-

lish positive operational control. To enable the forensic analysis

and, eventually, eliminate the threat, we have developed the �rst

decompiler for ladder logic programs.

Ladder logic is a graphical programming language for PLCs

that control physical processes such as power grid, pipelines, and

chemical plants; PLCs are a common target of malicious modi�-

cations leading to the compromise of the control behavior (and

potentially serious consequences). Our decompiler, Laddis, trans-

forms a low-level representation to its corresponding high-level

original representation comprising of graphical symbols and con-

nections. The evaluation of the accuracy of the decompiler on the

program of varying complexity demonstrates perfect reconstruc-

tion of the original program. We present three new attack scenarios

on PLC-deployed ladder logic and demonstrate the e�ectiveness of

the decompiler on these scenarios.

CCS CONCEPTS

• Security and privacy→ Denial-of-service attacks;

KEYWORDS

Disassembler, Ladder logic, PLC, SCADA, Industrial Control System,

Forensics, Protocol Reverse Engineering

ACM Reference Format:

Saranyan Senthivel, Shrey Dhungana, Hyunguk Yoo, Irfan Ahmed, Vas-

sil Roussev. 2018. Denial of Engineering Operations Attacks in Industrial

Control Systems. In CODASPY ’18: Eighth ACM Conference on Data and Ap-

plication Security and Privacy, March 19–21, 2018, Tempe, AZ, USA.ACM, New

York, NY, USA, Article 4, 11 pages. https://doi.org/10.1145/3176258.3176319

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5632-9/18/03. . . $15.00
https://doi.org/10.1145/3176258.3176319

1 INTRODUCTION

Programmable logic controllers (PLCs) are embedded devices used

in industrial control systems (ICS) to automate the control and

monitoring of physical industrial and infrastructure processes such

as gas pipelines, nuclear plants, power grids, and wastewater treat-

ment facilities [11]. Thus, their safety, durability, and predictable

response times are the primary design concerns. Unfortunately,

they are not designed to be resilient against cyberattacks [10]. If a

PLC is compromised, the physical process controlled by the PLC is

also compromised which could lead to a catastrophic incident.

To compromise a PLC, an attacker in�ltrates into an ICS network

to communicate with the PLC, or gains physical access of the PLC

to communicate using local USB or serial ports. The attacker may

attempt to modify either the �rmware (or the operating system)

of the PLC, or the control logic (typically written in the languages

de�ned by IEC 61131-3 such as Ladder Logic). The �rmware is

hard to modify for the attacker because it has to be signed by the

corresponding vendor’s private key [19]. The attacker may �nd

and utilize any debugging/testing ports (such as JTAG/UART) at

hardware level to compromise the �rmware [17]. However, this

requires physical access, which makes it impractical as a remote

attack.

The control logic de�nes how a PLC controls a physical process.

Unfortunately, it is vulnerable to malicious modi�cations because

PLCs either do not support digital signatures for control logic, or

the ICS operators do not use/con�gure them. The adversaries target

the control logic to manipulate the control behavior of the PLC. For

instance, Stuxnet targets Siemens S7-300 PLCs that are speci�cally

connected with variable frequency drives [15]. It infects the control

logic of the PLCs to monitor the frequency of the attached motors,

and only launches an attack if the frequency is within a certain nor-

mal range (i.e. 807 Hz and 1,210 Hz). The attack involves disrupting

the normal operation of the motors by changing their motor speed

periodically from 1,410 Hz to 2 Hz to 1,064 Hz and then over again.

For the purposes of our discussion, we de�ne engineering oper-

ations as a continuous cycle of developing and updating the PLC

control logic in response to changing operational requirements in

ICS. A vendor-supplied programing software is used to create a

control logic program and then to transfer it to/from a remote PLC

over the network. In case of an incident, a forensic investigator

(or a control operator) is likely to use the software to acquire the

control logic from a suspicious PLC since the PLCs are often located

at remote sites that may be di�cult to get to.

We present three new attack scenarios, referred to as denial of

engineering operations (DEO) attacks that subvert the capability of

the programing software to acquire the actual control logic from

an infected PLC. The �rst two attacks employ man-in-the-middle

approach to control the network tra�c during attempts to acquire

the control logic from an infected PLC. In the �rst (and most con-

ventional) attack, the attacker removes the infected code from the

packets to hide the infection, such that the programing software

shows the original (uninfected) logic to the investigator. In the

second attack, the attacker replaces the selected control logic in-

structions in the packets with noise; in our experiments, this caused

confusion and crashed the software. In the third attack, the attacker

creates a well-crafted malicious control logic that runs on a PLC

successfully but crashes the software when attempting to acquire

the control logic from the PLC. This attack does not employ man-

in the middle and allows the attacker to leave the network after

transferring the malicious control logic to the PLC.

Since the �rmware is intact in these attacks, the PLC sends the

entire (infected) control logic to the programing software. Although

the attacker intercepts the tra�c and/or crashes the software, the

original (infected) control logic can be captured and extracted from

the network tra�c for forensic analysis. However, the control logic

being transferred is the compiled version, which is the binary (low-

level representation of) control logic.

This paper presents a decompiler Laddis for the ladder logic,

which is a widely-used programing language for PLCs. Laddis is

the �rst decompiler developed for ladder logic programs. It sup-

ports ladder logic instructions extensively. Laddis extracts and

decompiles a ladder logic program from the network tra�c on both

directions i.e. when a ladder logic is downloaded to and uploaded

from a PLC. The programing software downloads a ladder logic

program to a PLC to con�gure and/or update the logic in the PLC.

However, it cannot show a ladder logic program from the down-

load stream of an attacker. The only option is to let the attacker

download the program completely to a target PLC, and then use

the software to upload the program from the PLC, which is unac-

ceptable since it may damage the physical process being controlled

by the PLC.

For the evaluation, we use Allen-Bradley Micrologix 1400-B

PLC and RSLogix 500 programing software. Laddis is currently

developed and tested for RSLogix 500. We created 91 ladder logic

programs of varying complexity and also downloaded 58 programs

from PLCS.net [7] to evaluate the accuracy of Laddis. The down-

loaded programs are developed by di�erent programmers for di�er-

ent physical processes such as tra�c lights, an elevator, and a train

crossing. We further use six versions of RSLogix 500 to generate

six instances of each ladder logic program. Our evaluation results

show that Laddis is compatible with all the versions of RSLogix

and decompiles all the binary programs with 100% accuracy. Fur-

thermore, Laddiswas evaluated against the proposed three attacks

and decompiles the infected programs successfully.

The contribution of this work is threefold: a) we identify new

attack scenarios speci�c to the manner in which ICS are operated;

b) we present a new decompiler tool that can reconstruct the attack

code from network capture; and c) we show how to perform forensic

analysis in response to the attacks

2 NEW ATTACK SCENARIOS

We start our discussion with an outline of the three new attack

scenarios that incapacitate PLC programming software by limiting

its abilities of acquiring and displaying a ladder logic program from

Engineering

Software

Original

Program

MITM

Attacker

Program

Attacker

Program
Original

Program

PLC

Figure 1: DEO Attack 1 – Hiding infected ladder logic (run-

ning in a target PLC) from the engineering software.

MITM Original

Program
PLC

Attacker

Program

Engineering

Software

Crash

Figure 2: DEOAttack 2 – Crashing the engineering software.

PLC Attacker

Program
Attacker

Attacker

Program

Engineering

Software

Error

Figure 3: DEO Attack 3 – Injecting a crafted ladder logic pro-

gram to a PLC that crashes the engineering software.

a PLC. We brie�y introduce the three attack scenario in this section,

and we will describe them in detail in section 6.4 along with the

usage of Laddis.

DEOAttack 1: Hiding infected ladder logic (running in a tar-

get PLC) from the PLC programing software. In this attack

scenario, an attacker performs man-in-the-middle between a PLC

and an engineering workstation running a PLC programing soft-

ware. When a ladder-logic program is being downloaded from the

programming software to the PLC, the attacker replaces a part of an

original ladder logic with an infected logic. When a control engineer

tries to upload the (infected) program from the PLC to the program-

ing software, the attacker intercepts the tra�c and replaces infected

part with the original logic. Hence, the software displays the normal

program that clearly deceives the control engineer (Figure 1).

DEO Attack 2: Crashing the PLC Programing Software. In

this attack scenario, the attacker employs the man-in-the-middle

to intercept the network tra�c between the programing software

running on an engineering workstation and a target PLC. When

a ladder logic program is being uploaded from a PLC to the pro-

graming software, the attacker intercepts the tra�c and changes

the original ladder logic programs into malformed programs by

replacing ladder logic instructions with noise such as the sequence

of 0xFF bytes. The software crashes when it tries to process the

malformed ladder logic program (Figure 2).

DEO Attack 3: Injecting a crafted ladder logic program to a

PLC that crashes the PLC programing software. This attack

scenario is the stealthiest among the three proposed scenarios. The

attacker creates a well-crafted (malicious) ladder-logic program at

the binary-level that runs on a target PLC successfully. However,

when the programing software tries to acquire the program from

the PLC, it cannot process it and gives an error, causing the denial

of service (refer to Figure 3). This scenario does not involve any

man-in the middle attacks and allows the attacker to leave the ICS

network after installing the malicious program to the PLC.

!"#$%&'(!"#$%&'()*%''+,-../-!0'1%&23)4%*+,

!"#$%)'(!"#$%&'()*%56+,-../-!'06%&'()7%*84%7%4+,

!"!"!

!"!"!

!"!"!

!"!"!

!"!"!

!"!"!

a) Ladder-logic source code snippet of a traffic-light program

b) Binary ladder-logic snippet of a traffic-light program

c) Laddis ASCII output of decompiling the binary ladder-logic snippet

d) Laddis graphical output of decompiling the binary ladder-logic snippet

!"!"!

!"!"!

Figure 4: Overview of the Decompiler Laddis. A ladder logic

program is compiled to a binary ladder logic, which is then

decompiled by Laddis

.

3 OVERVIEW OF THE DECOMPILER - LADDIS

Figure 4 presents the three stages of a ladder logic program, begin-

ning from the creation of the program (source code) (Figure 4(a)),

which is then compiled into a binary form that is run by a PLC

(Figure 4(b)). Finally, the proposed decompiler Laddis transforms

the binary ladder logic back to its original form i.e. source code

(Figures 4(c) and 4(d)).

Ladder-logic Program. Ladder logic is widely-used to program

PLCs. It is a graphical language comprising of symbols that are

placed together to form a control logic. Each symbol is an instruc-

tion such as timer, counter, input, output, move etc., and is analo-

gous to opcode in Assembly language. It works on data to a�ect

the current state of a physical process. The data is referenced in

the symbols and is analogous to an operand.

A ladder logic program is divided into rungs (horizontal lines)

placed one after another (similar to the steps of a ladder). Each rung

has symbols that can be placed in series or parallel depicting AND

or OR logic respectively. The execution of the program starts from

the instructions of the �rst rung from left to right and then moves

to the next rung in the sequence.

Figure 4(a) depicts a ladder logic code snippet of a tra�c-light

program that controls red, orange and green lights using timers.

The snippet shows the third and the fourth rungs of the program,

each has two instructions (or symbols) placed in a series. When a

timer runs, it turns on its respective light; after the timer completes

its execution, it turns o� the light.

Binary ladder logic. A PLC does not run graphical symbols of lad-

der logic directly. A ladder logic program is compiled into its binary

(low-level representation) form that a PLC can execute. Figure 4(b)

depicts the code snippet of the binary ladder logic of the tra�c-light

program, which contains rungs and instructions at binary-level.

(The next section presents the details)

Decompiler. We develop Laddis that understands the binary lad-

der logic and decompiles it into its high-level representation in a

human-readable form. Figures 4(c) and 4(d) present the snippet of a

decompiled code generated by Laddis. It is the tra�c-light program

(shown in Figure 4(a)). The Laddis output clearly identi�es rungs

and the logic in each rung. In Figure 4(c), the output only consists of

the ASCII characters that is useful for automating further forensic

analysis such as via Python scripts. Laddis replaces the graphi-

cal symbols with their equivalent instruction codes derived from

the abbreviations of the instructions. For instance, TON is used

for the Timer-On-Delay instruction, XIC for Examine-If-Closed,

and OTE for Output-Energizer. In Figure 4(d), Laddis takes its

ASCII output as input and generates the graphical ladder logic.

The ladder logic instructions contain data or the addresses of

the data. For instance, timer instruction has three types of data i.e.

Timer Base, Preset, and Accum. The OTE has the address of the bit

representing the current state of a tra�c light i.e. ON or OFF. The

Laddis output (Figures 4(c) and 4(d)) is complete and equivalent of

the original code (in Figure 4(a)), which includes rungs, instructions

and their respective data and the addresses of the data.

4 LADDIS DECOMPILATION INTERNALS

To decompile a binary ladder logic, a number of challenges are in-

volved including understanding the anatomy of rungs and di�erent

ladder logic instructions at binary-level. Apparently, the binary

ladder logic �le is not self-contained for an accurate decompilation

and the associated data and con�gurations are required.

It is worth mentioning that we use Allen-Bradley’s RSLogix 500

programing software to discover the internals of a binary ladder

logic. The �ndings may re�ect RSLogix 500 internals. However,

it does not hinder the goal of this work, which is to evaluate the

e�ectiveness of this decompiler under the three proposed attacks.

These attacks subvert the capability of a programming software to

acquire a ladder logic program from a remote compromised PLC,

restricting a forensic investigator from acquiring and analyzing an

important piece of evidence.

This section further discusses the internals of a binary ladder

logic and how they are used by Laddis to perform decompilation.

4.1 Identifying the Rungs

Figure 5 shows an example of a binary ladder-logic with the labels

for the bytes of the �rst rung. A binary ladder-logic starts with

a rung and may consist of multiple rungs located in a sequence.

Each rung always starts with two bytes of zero values, followed

by two bytes containing a signature of the rung. If a rung has

multiple exact instances in the binary logic, all the instances have

the same signature. The �fth and sixth bytes are the rung size. The

instructions start from the sevenths bytes (discussed in the next

section). The size of the rungs varies depending on the type and

the number of the instructions.

Laddis uses the rung-size �eld to identify the rungs in a bi-

nary logic. Since the rungs are located contiguously in a sequence,

Laddis starts with the �rst rung and then traverses the subsequent

rungs; each rung always starts with 0x00 and 0x00.

4.2 Identifying the Instructions in a Rung

The instructions in a rung are located contiguously in a sequence,

starting from the seventh byte of each rung. An instruction com-

prises of an opcode (two bytes), a �le-number (one byte), an operand

consisting an o�set of a word-address (two bytes) and a bit address

(two bytes). The Opcode represents the operation of the instruction

such as XIC (Examine-if-closed) and RES (Reset). It typically works

on data; each type of data has an assigned number that is referred

to as �le-number. For instance, 0x00, 0x01, 0x03 are used for out-

put, input and status data respectively. The operand points to the

data of interest. The operand size may vary in the instructions,

thereby varying the length of the instructions. For instance, the

instructions JMP (Jump-to-label), SUB (Subtraction) and ASC (ASCII-

String-Search) are 10, 22 and 28 bytes long. Some instructions such

as END do not have an operand (the last rung in the last line in

Figure 5).

Branch instruction is an exception. It is used to place the sym-

bols in parallel in a ladder logic source code. At the binary-level,

branch instruction does not have the prescribed structure of an

instruction and comprises of three components, 1) branch start, 2)

branch continue, and 3) branch end; each component has a speci�c

unique code at binary-level (similar to opcode) i.e. 0x0800D402,

0xD0021000, and 0x14000C00 and 0xD0020C00 respectively.

To identify each instruction in a rung, Laddis maintains the

mapping between ladder logic instructions (the graphical symbols)

and their binary-representation along with the size of the instruc-

tions and their short forms in ASCII characters. Table 1 lists the

type of ladder logic instructions that are supported by Laddis. The

total supported instructions are 120 (refer to Table 8 in appendix

for the complete list).

4.3 Obtaining the Addresses in the Instructions

The instructions use addresses to point to the data of interest. Fig-

ure 8 presents an example of the addressing format i.e. O:1/3. ’O’

refers to the type of �le/data i.e. output. After colon, ’1’ and ’3’ are

the word and bit index numbers that are pointing to a speci�c bit.

The instructions at the binary level contain the bit index number

and the �le number (pointing to the type of a �le/data). However,

it does not have the word index. Recall that a binary ladder logic

is not self-contained to perform accurate decompilation. In this

Rung starts with

0x00 0x00

Rung

Signature

Rung

Size

XIC

File

No.

Word

Offset

Bit

Address XIO

File

No.

Word

Offset

Bit

Address

TON File

No.

Timer

Addressing

First Rung

END

Signature (first two enclosed bytes)

and Size (next two enclosed bytes) of Rungs

Figure 5: Binary ladder logic consisting of several rungs;

each has multiple instructions. A pair of brackets encloses a

rung.

Start of 10-byte tuples;

Each representing a data file 10-bytes of first tuple

File Type

File Size

Base Address

Zero Padding

INPUT tuple

File Type File Size Base Address

Zero Padding

Zero Padding

TIMER tuple

Figure 6: Con�guration �le for addressing in the instruc-

tions.

EN,TT,DN,

BASE
Pre ACC

T4:0

T4:1

T4:2

T4:3

Figure 7: Timer �le for the data in the timer instruction.

case, it requires the associated con�guration �le to determine the

word index. Figure 6 shows the con�guration data. It contains 10

byte-tuple for each type of �le/data t (such as timer, input, output

etc). Each tuple has a base-address (let say, Bt). In binary ladder

logic, an instruction contains a word o�set (let say, Ot). To �nd

out the word index for an instruction, Ot − Bt is performed. For

instance, in Figure 5, the �rst instruction in the �rst rung is XIC.

a) Request message for a ladder logic file

b) Reply message containing a ladder logic file

Request

command

File num
Transaction

number

File type:

ladder logic

FNC: read

with 3 Addr Byte size

to read
Element

number

Sub-element

number

Reply
Ladder

logic file

Transaction

number

Figure 10: File extraction from uploading tra�c

logic �le outputs of the extractor program. The decompiler uses

a con�guration �le which stores information like opcode, size,

start and end addresses of various types of instructions. Based

on that information it can identify the rungs, instructions and

branchings. During the course of its development, we tested it with a

variety of ladder logic programs to con�gure their instruction types.

We used techniques of di�erential analysis to con�gure di�erent

types of the instructions [18]. With every subsequent test case, we

changed one speci�c instruction of the program and analyzed the

binary values. The tests were repeated until we obtained complete

con�guration mapping of the 120 types of instructions used in the

ladder logic programs by RSLogix. We stress-tested our decompiler

withmany variations of RSLogix programs to �nd any con�guration

our program would have missed. We used GNU Di�utils [2] for this

di�erential analysis. After creating a complete decompiler based

on the information gained from various test datasets, we repeated

more tests to �nd new types of instructions. The �nal part of the

decompilation included drawing the images of the ladder logic

program using the Python Image Library (PIL). The result of this

program is easy to understand ladder logic program constructed

solely from the network capture packets.

6 EVALUATION

6.1 Experimental Settings

Lab Setup. We use six versions of Allen-Bradley’s RSLogix 500

programing software and Micrologix 1400 Series B controller. The

RSLogix software (running on Windows 7 virtual machine (VM))

and Micrologix PLC communicate with each other over Ethernet.

We also install Wireshark on the VM for capturing network packets.

Dataset.We developed 91 ladder logic programs of varying com-

plexity for initial experiments and testing. However, for the eval-

uation, we use a di�erent potentially-unbiased dataset consisting

of 58 ladder logic source-code programs downloaded from vari-

ous sources on the Internet (including github.com, plctalk.net, and

theautomationstore.com). The programs are written for di�erent

physical processes (such as tra�c-light, elevator and train-crossing)

Table 2: Dataset summary of ladder logic programs

File Info. Rungs Instructions

File Size

(kB)

of

Files
Min Max Total Avg Min Max Total Avg

20-40 29 2 22 166 5.72 3 67 428 14.76

41-60 17 3 40 158 9.29 5 104 569 33.47

61-80 7 4 17 66 9.43 9 63 235 33.57

81-100 3 7 15 30 10.00 15 31 65 21.67

101-120 2 10 63 73 36.50 24 249 273 136.50

Total 58 - - 493 - - - 1,628 -

involving various detectors, sensors, device controllers and coun-

ters. They have 493 rungs and 1628 instructions in total. These pro-

grams are particularly useful for performing unbiased evaluation

since they are developed by di�erent authors. Table 2 summarizes

the dataset based on the �le size, number of instructions and rungs.

Methodology for Experiments. A typical experiment involves

RSLogix to transfer a ladder logic program to/from the Micrologix

PLC, while capturing the network tra�c. Laddis then, takes the

tra�c as input, extracts binary ladder logic and its associated con-

�guration and data to separate �les. It further takes the �les as

input and processes them to generate a decompiled ladder logic,

which is then, compared with the original ladder logic program

manually.

6.2 Decompilation Accuracy of Laddis

Recall that Laddis performs three main functions to decompile a

binary ladder logic. It �rst 1) identi�es the rungs and 2) the instruc-

tions in the rungs and then, 3) reconstructs the ladder logic from

the binary logic. This section evaluates the accuracy of Laddis on

performing these functions.

1) Identifying the Rungs. To evaluate the Laddis accuracy on

the rungs, we analyze each ladder logic �le in the dataset and count

the total number of rungs and the number of instructions in each

rungmanually. At this stage, we only count the instructions without

considering what are these instructions.

We further obtain the Laddis ASCII output of decompiling the

�les in the dataset and use a python script that processes the output

of all the �le and obtains the counts. Our results show that both

RSLogix and Laddisreported exact number of rungs and instruc-

tions i.e. 493 and 1,628 in total, respectively. Hence, we conclude

that Laddis is 100% accurate in identifying rungs.

2) Identifying the Instructions. To evaluate the Laddis accuracy

on identifying exact instructions, we obtain the frequency of each

instruction in the dataset �les using RSLogix manually and a python

script for Laddis. We found 33 unique instructions. Table 3 shows

the frequency of the instructions for both RSLogix and Laddis. The

comparison shows 100% accuracy concluding that the Laddis can

identify instructions accurately.

3)Reconstructing the Ladder Logic.To evaluatewhether Laddis

ladder logic output conforms with the original ladder logic, we ob-

tain Laddis graphical output of the ladder logic �les in the dataset

and compare them with the original ladder logic in RSLogix man-

ually, using the following parameters: position of an instruction

in a rung, address and con�guration data in each instruction, and

Table 3: Comparison with RSLogix on decompiling

Symbols Name Types
RS-

Logix
Laddis

Accu-

racy

XIC Examine if open

Bit

521 521 100%

XIO Examine if closed 179 179 100%

OTE Output Energize 183 183 100%

OTL Output Latch 20 20 100%

OTU Output Unlatch 41 41 100%

ONS One Shot 44 44 100%

TON Time On Delay

Timer and

Counter

58 58 100%

TOF Timer O� Delay 5 5 100%

RTO Retentive Timer 3 3 100%

CTU Count Up 7 7 100%

RES Reset 11 11 100%

EQU Equal

Comparison

43 43 100%

GEQ
Great Than

or Equal
20 20 100%

GRT Greater Than 6 6 100%

LEQ
Less Than

or Equal
5 5 100%

LES Less Than 8 8 100%

LIM Limit Test 14 14 100%

MEQ
Masked Compari-

son for Equal
2 2 100%

NEQ Not Equal 7 7 100%

ADD Add

Math

13 13 100%

SUB Subtract 14 14 100%

MUL Multiply 1 1 100%

DIV Divide 4 4 100%

CLR Clear 4 4 100%

SCP
Scale with

Parameters
1 1 100%

MOV Move Data

Handling

92 92 100%

MVM Masked Move 2 2 100%

OR Logical OR Branch 202 202 100%

JSR
Jumpt to

Subroutine

Program

Control
43 43 100%

BSL Bit Shift Left Application

Speci�c

5 5 100%

SQO
Sequencer

Output
4 4 100%

MSG Message
SLC Comm-

unication
8 8 100%

END End Unspeci�ed 58 58 100%

Total 1628 1628 100%

the connection of two instructions whether in series (AND logic)

or parallel (OR logic). Figures 11a and 11b shows an example of

RSLogix and Laddis that are used for comparison. Our comparison

results show that RSLogix source code and Laddis graphical output

comply with each other, concluding that Laddis can reconstruct

the source code of a ladder logic from its binary representation

accurately.

6.3 Laddis Compatibility with Older RSLogix

We use RSLogix 9.00.04 version to perform the experiments on

Laddis accuracy in the last section. We further repeat the experi-

ments on �ve older versions of RSLogix to evaluate the compatibil-

ity of Laddis with these version. Table 4 shows the overall results.

Table 4: Laddis compatibility with older RSLogix versions

RSLogix Versions Number of Files Laddis Accuracy(%)

8.10.00 28 100%

8.20.00 35 100%

8.30.00 40 100%

8.40.00 58 100%

9.00.00 58 100%

9.00.04 58 100%

We did not �nd any discrepancies in the Laddis output. Thus, we

conclude that Laddis is compatible with the older versions.

6.4 Detailed Attack Scenarios

This section evaluates the e�ectiveness of Laddis under the three

attack scenarios outlined earlier.

Assumption. In the �rst two scenarios, we assume that the at-

tacker can intercept and modify the network tra�c between an

engineering workstation and a target PLC using man-in the-middle

(MITM) [6]. In ICS, MITM is a known threat. Kaspersky Lab re-

ported that 91.6% of the ICS environments (that they analyzed) use

insecure protocols that are prone to data interception and modi�-

cation using MITM [5]. In the past, MITM was observed in the ICS

operational environments such as Stuxnet [15] and IRONGATE [4].

The third attack scenario does not involve MITM.

1) DEO Attack 1: Hiding infected ladder logic (running in a

target PLC) from RSLogix.

Attack Scenario: The attacker transfers an infected ladder logic

to a target PLC. To hide the infection, when a control operator/engi-

neer tries to acquire the program from the PLC using RSLogix,

the attacker intercepts the tra�c via MITM and replaces the infec-

tion with the original logic. Consequently, the RSLogix shows the

original (uninfected) ladder logic to the operator (Figure 1).

Attack Execution: We use tra�c-light ladder logic program,

which consists of three timers, each controlling one of the three

signal lights (green, orange, and red). The goal of the attacker is

to make consistent change in the timing of green light so that the

light remains on for 100 seconds, instead of original 5 seconds.

We employ infamous ARP poisoning using Ettercap [23] to

achieve MITM.When a control engineer downloads the tra�c-light

program to a target PLC using RSLogix, the attacker intercepts the

network tra�c, and the preset value of the timer controlling the

green light from 5 seconds (original value) to 100 seconds (attacker’s

desired value) (Figure 12). Now the PLC turns on the green light for

100 seconds. Recall that a timer instruction has three parameters:

base, preset, and accumulated. The preset sets the timing. At this

stage, if RSLogix uploads the program from the PLC, it will show

the attacker’s change in the timer instruction. Thus, the attacker

also intercepts the upload tra�c and replaces the 100 seconds with

5 seconds in the timer instruction, which hides the infection from

RSLogix (shown in Figure 13).

Forensic Analysis with Laddis: Strange ARP table (due to

ARP poisoning) or duplicated packets (due to the MITM) may raise

suspicion that can lead to a forensic investigation. If the network is

captured, a forensic investigator can �lter the tra�c based on source

137.30.122.142 (00:0c:29:9f:ad:bb) <------ 137.30.122.108 (00:1d:9c:a5:bc:3f)

Rung-0: XIC/[I1:0/0] AND XIO/[T4:2/DN] --> TON/[T4:0/1.0/3/3]

Rung-1: XIC/[T4:0/TT] --> OTE/[B3:0/3]

Rung-2: XIC/[T4:0/DN] --> TON/[T4:1/1.0/5/0]

Rung-3: XIC/[T4:1/TT] --> OTE/[B3:0/1]

Rung-4: XIC/[T4:1/DN] --> TON/[T4:2/1.0/2/0]

Rung-5: XIC/[T4:2/TT] --> OTE/[B3:0/2]

Rung-6: XIO/[I1:0/0] AND XIO/[T4:3/DN] --> TON/[T4:3/1.0/1/0]

Rung-7: ((XIC/[O0:0/0] AND XIO/[T4:3/DN]) OR (XIC/[T4:3/DN] AND XIO/[O0:0/0]))

--> OTE/[B3:0/0]

Rung-8: ((XIC/[B3:0/0]) OR (XIC/[B8:0/0])) --> OTE/[O0:0/0]

Rung-9: ((XIC/[B3:0/1]) OR (XIC/[B8:0/1])) --> OTE/[O0:0/1]

Rung-10: ((XIC/[B3:0/2]) OR (XIC/[B8:0/2])) --> OTE/[O0:0/2]

Rung-11: ((XIC/[B3:0/3]) OR (XIC/[B8:0/3])) --> OTE/[O0:0/3]

Rung-12: XIC/[I1:0/0] --> OTE/[O0:0/3]

Rung-13: END

Inserted rung by attacker

MAC address of RSLogix system MAC address of PLC

Figure 19: Laddis ASCII output: attack scenario #3

Table 5: Extractor performance vs. pcap size

FileSize

(KB)

of

Files

Avg.#of

Packets

Max # of

Packets

Avg Time

(sec)

Max Time

(sec)

0-100 14 3,663 10,288 4.517 11.51

101-300 11 4,602 17,414 5.86 22.74

301-400 8 3,033 6,164 3.78 7.69

401-500 8 4,017 5,143 5.03 6.50

501-600 10 1,625 4,959 2.07 6.05

>=601 7 2,305 7,721 3.15 10.20

7 RELATED WORK

PLCs are built with safety and endurance as primary requirements,

and very few private protocols have built-in security features [24].

Patel et al acknowledge that SCADA devices using secret propri-

etary protocols can be easily targeted by attackers attempting to

reverse engineer those protocols. Our study is an example of reverse

engineering of PCCC protocol used by many popular Allen Bradley

PLCs [1]. Narayan et al mention that unspeci�ed protocols exist

in di�erent OSI models [22]. These protocols are not immune to

reverse engineering techniques and attackers can extract commu-

nication data from a SCADA network by decoding such protocols.

Authors mention that task of protocol reverse engineering is "te-

dious" and "time consuming" manually. There are disassembly tools

like IDA Pro [3] to perform the disassembly of binary executable;

however, analysts [28] mention that its disassembly is prone to

errors and requires further manual analysis. Our tool provides a

simpler way to analyze the malicious code without the need for

access to the PLC.

Fovino et al. [16] propose the SCADA protocol sensor, which is

analogous to Snort [25]. The authors use the network analysis of

the tra�c to detect malicious code in the devices using DNP3 and

Modbus protocols. They use databases to store the signature of the

single packet-based attacks, maintain the status of network devices,

use state validation based on another database which includes the

rules that system adopts during the critical control.

Cheung et al. proposed model-based intrusion detection system

for SCADA network. They construct normal model that character-

ize the expected behavior of SCADA network, and detect attacks

that deviate from the constructed normal model [13]. Derarnan et

al. emphasize the importance of network behavioral analysis and

warn that signature-based detection systems can fall short in case

of zero-day attacks [14]. These authors have based their research

on securing the SCADA networks from intrusions through the

implementation of protocol reversing, misuse detection, anomaly

detection and the successful analysis of network tra�c. Our tool

constructs the actual ladder logic program from the network tra�c

and in case of attack without reliance on the HMI to detect the

changes; it also provides the extracted malicious code.

The discovery of Stuxnet attracted huge worldwide interest in

the �eld of industrial control system security [21].When the Iranian

nuclear facilities using Siemens SIMATIC WinCC SCADA systems

were compromised, it was evident that the further study in securing

the critical infrastructures is crucial [12].

As discussed in Kotler et al. [20], running additional software

to check the programs in a PLC has performance drawbacks. They

used �nite state machine to check computational tree logic and lin-

ear temporal logic to detect malicious or faulty PLC programs. They

show how small changes induced by intrusions can go undetected

in the ladder logic software. Their method analyzedminutemalfunc-

tions in ladder logic programs running a virtual crane, and found

unnoticeable changes that could cause catastrophic outcomes [20].

Similarly, Valentine & Farkas state that an attacker can remove

an instruction like a coil needed to trigger an alarm but the code

will compile in the Human Machine Interface (HMI) and will be

downloaded to the PLC [27]. The authors propose code validation

process using a database to �ag malicious code.

Cutter [26] is a parsing tool for data �les exchanged between a

PLC and engineering workstation. It is developed by the authors.

Cutter is not a decompiler and has mainly developed for the data

�les.

8 CONCLUSION

In this work, we introduced a new class of attacks on industrial

control systems–denial of engineering operations, which can severely

impact the situational awareness of the operator, and can provide

time and cover for a malicious control logic installed on a PLC to

produce the e�ects in the physical world.

Fundamentally, the vulnerability stems from the fact that en-

gineering software used to develop, test, and deploy the control

logic expects any program retrieved from the PLC to be properly

formatted and there are few (if any) provisions to recover from a

malformed responses that fail integrity checks. At the same time,

the PLC has fewer such veri�cations, which allows it to execute

the malformed code. This dichotomy allows an adversary who has

access to the PLC via the network the opportunity to deceive the

operator by crafting and installing programs that function as de-

sired but not understood by the engineering software. Although,

it is possible to overcome this by reprogramming the PLC with a

known-good version of the code; this would also destroy all the

traces of the attack for analytical purposes.

To address the problem, we developed Laddis–a ladder logic

decompiler that can correctly reconstruct the source of the original

code from a network trace. This allows the operator to quickly

analyze the attack and respond accordingly. Future extension can

automate this process and allow defensive reaction in real time.

APPENDIX

Table 6: Decompiler performance vs. number of rungs

of

Rung

of

Files

Max # of

Rung

Avg time

(sec)

Max time

(sec)

0-3 8 3 0.16 0.19

4-5 18 5 0.30 0.58

6-9 11 9 1.26 3.15

10-14 16 13 1.01 2.60

>=15 5 63 5.46 16.41

Table 7: Decompiler performance vs. number of inst.

of

Inst.

of

Files

Max # of

Inst.

Avg time

(sec)

Max time

(sec)

0-10 8 9 0.176 0.36

11-20 16 20 0.356 1.19

21-30 9 27 0.922 1.55

31-40 14 37 0.897 2.60

41-60 5 60 1.509 3.15

>=61 6 312 4.738 16.41

Table 8: Instruction Information

Op-

code

Byte

code

Size

(byte)

Op-

code

Byte

code

Size

(byte)

Op-

code

Byte

code

Size

(byte)

END 0030 2 MUL 00A4 22 LBL 00EC 8

XIC 00E4 8 DIV 00A8 22 JSR 0054 10

XIO 00E8 8 SQR 0118 16 RET 0024 2

OTE 00BC 8 NEG 0078 16 SBR 00F4 10

OTL 00C0 8 TOD 0148 16 TND 002C 2

OTU 00C4 8 FRD 014C 16 MCR 0020 2

ONS 02AC 8 GCD 02BC 16 SUS 007C 10

OSR 0278 16 MOV 0070 16 ABL 01E0 16

OSF 0274 16 MVM 0098 22 ACB 01E4 16

TON 0158 10 AND 008C 22 ARD 0200 22

TON 003C 10 OR 0090 22 ARL 0204 22

TON 029C 10 XOR 0094 22 AWT 0210 22

TOF 0154 10 NOT 006C 16 AWA 020C 22

TOF 0040 10 CLR 0050 10 AHL 01F8 28

TOF 0298 10 COP 0088 22 ACL 01F0 22

RTO 0150 10 FLL 0084 22 ACN 01EC 22

RTO 0038 10 DLG 02B0 10 ACI 01E8 16

RTO 028C 10 SCL 0114 28 AIC 01FC 16

CTU 0044 10 INT 012C 10 AEX 01F4 28

CTD 0048 10 STS 0290 10 ASC 0208 28

RES 004C 10 PID 027C 22 ASR 0214 16

RHC 035C 16 PTO 0280 10 HSL 026C 34

RTA 02B4 2 PWM 0284 10 RAC 0288 16

IIM 0174 22 UID 02A0 10 SIN 024C 20

IOM 0178 22 UIE 02A4 10 COS 0248 20

SVC 0294 10 UIF 02A8 10 TAN 0250 20

MSG 0270 16 CPW 02B8 22 ASN 0240 20

MSG 02CC 22 RCP 02C0 16 ACS 023C 20

REF 0120 2 LCD 02C8 46 ATN 0244 20

LIM 00FC 22 RPC 037C 16 LN 0234 24

MEQ 00E0 22 BSL 00B0 22 LOG 0238 24

EQU 00C8 16 BSR 00AC 22 DEG 0264 24

NEQ 00CC 16 SQC 00B8 28 RAD 025C 16

LES 00D8 16 SQL 0100 22 XPY 0230 22

GRT 00D0 16 SQO 00B4 28 ABS 0260 16

LEQ 00DC 16 FFL 0104 22 SCP 0254 40

GEQ 00D4 16 FFU 0108 22 SWP 0258 16

CPT 0228 20 LFL 010C 22 DCD 0080 16

ADD 009C 22 LFU 0110 22 ENC 0190 16

SUB 00A0 22 JMP 0058 10 TDF 0360 22

REFERENCES
[1] 1996. DF1 Protocol and Command Set Reference Manual. http://ow.ly/

N61S30fsdqg. (1996). [Online; accessed 23-Sept-2017].
[2] 2017. GNU Di�utils. https://www.gnu.org/software/di�utils/. (2017). [Online;

accessed 23-Sept-2017].
[3] 2017. Hex-Rays. https://www.hex-rays.com/. (2017). [Online; accessed 23-Sept-

2017].
[4] 2017. IRONGATE ICS Malware. https://www.�reeye.com/blog/threat-research/

2016/06/irongate_ics_malware.html. (2017). [Online; accessed 23-Sept-2017].
[5] 2017. Kaspersky. https://www.kaspersky.com/blog/industrial-vulnerabilities/

12596/. (2017). [Online; accessed 23-Sept-2017].
[6] 2017. Man-in the middle attack in ICS. https://ics-cert.us-cert.gov/content/

overview-cyber-vulnerabilities#man. (2017). [Online; accessed 23-Sept-2017].
[7] 2017. PLCS.net. http://www.plcs.net/downloads/index.php?&direction=0&

order=&directory=Allen_Bradley. (2017). [Online; accessed 23-Sept-2017].
[8] 2017. Python Package Index Pyshark. https://pypi.python.org/pypi/pyshark.

(2017). [Online; accessed 23-Sept-2017].
[9] 2017. Python Software Foundation. https://www.python.org/. (2017). [Online;

accessed 23-Sept-2017].
[10] I. Ahmed, S. Obermeier, S. Sudhakaran, and V. Roussev. 2017. Programmable

Logic Controller Forensics. IEEE Security Privacy 15, 6 (November 2017), 18–24.
https://doi.org/10.1109/MSP.2017.4251102

[11] Irfan Ahmed, Vassil Roussev, William Johnson, Saranyan Senthivel, and Sneha
Sudhakaran. 2016. A SCADA System Testbed for Cybersecurity and Forensic
Research and Pedagogy. In Proceedings of the 2Nd Annual Industrial Control
System Security Workshop (ICSS ’16). ACM, New York, NY, USA, 1–9. https:
//doi.org/10.1145/3018981.3018984

[12] T. M. Chen and S. Abu-Nimeh. 2011. Lessons from Stuxnet. Computer 44, 4 (April
2011), 91–93.

[13] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes. 2007.
Using Model-based Intrusion Detection for SCADA Networks. (jan 2007), 127–
134.

[14] M. Deraman, J. M. Desa, and Z. A. Othman. 2010. Multilayer packet tagging
for network behaviour analysis. In 2010 International Symposium on Information
Technology, Vol. 2. 909–913.

[15] Nicolas Falliere, Liam O Murchu, , and Eric Chien. 2011). W32.Stuxnet Dossier.
Technical Report. Symantec.

[16] I. N. Fovino, A. Carcano, T. D. L. Murel, A. Trombetta, and M. Masera. 2010.
Modbus/DNP3 State-Based Intrusion Detection System. In 2010 24th IEEE In-
ternational Conference on Advanced Information Networking and Applications.
729–736.

[17] Luis Garcia, Ferdinand Brasser, Mehmet H. Cintuglu, Ahmad-Reza Sadeghi,
Osama Mohammed, and Saman A. Zonouz. 2017. Hey, My Malware Knows
Physics! Attacking PLCs with Physical Model Aware Rootkit. In 24th Annual
Network & Distributed System Security Symposium (NDSS).

[18] Simson Gar�nkel, Alex Nelson, and Joel Young. 2012. A General Strategy for
Di�erential Forensic Analysis. In The Digital Forensic Research Conference DFRWS.
S50–S59.

[19] Naman Govil, Anand Agrawal, and Nils Ole Tippenhauer. 2017. On Ladder
Logic Bombs in Industrial Control Systems. CoRR abs/1702.05241 (2017). http:
//arxiv.org/abs/1702.05241

[20] S. Kottler, M. Khayamy, S. R. Hasan, and O. Elkeelany. 2017. Formal veri�cation
of ladder logic programs using NuSMV. In SoutheastCon 2017. 1–5.

[21] R. Langner. 2011. Stuxnet: Dissecting a Cyberwarfare Weapon. IEEE Security
Privacy 9, 3 (May 2011), 49–51.

[22] John Narayan, Sandeep K. Shukla, and T. Charles Clancy. 2015. A Survey of
Automatic Protocol Reverse Engineering Tools. ACM Comput. Surv. 48, 3, Article
40 (dec 2015), 26 pages.

[23] A. Ornaghi and M. Valleri. 2017. Ettercap. https://ettercap.github.io/ettercap/.
(2017). [Online; accessed 23-Sept-2017].

[24] Sandip C. Patel, Ganesh D. Bhatt, and James H. Graham. 2009. Improving the
Cyber Security of SCADA Communication Networks. Commun. ACM 52, 7 (July
2009), 139–142.

[25] Martin Roesch et al. 1999. Snort: Lightweight intrusion detection for networks..
In Lisa, Vol. 99. 229–238.

[26] Saranyan Senthivel, Irfan Ahmed, and Vassil Roussev. 2017. SCADA network
forensics of the PCCC protocol. Digital Investigation 22 (2017), S57–S65.

[27] S. Valentine and C. Farkas. 2011. Software security: Application-level vulnera-
bilities in SCADA systems. In 2011 IEEE International Conference on Information
Reuse Integration. 498–499.

[28] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith. 2016. Helping Johnny
to Analyze Malware: A Usability-Optimized Decompiler and Malware Analysis
User Study. In 2016 IEEE Symposium on Security and Privacy (SP). 158–177.

