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Abstract

Programmable Logic Controllers (PLCs) are critical to in-

dustrial control systems (ICS), yet their memory remains a

prime target for exploitation. While traditional attacks focus

on network intrusions, PLC memory manipulation enables

sophisticated attacks, such as malicious process control and

supply chain backdoors. Existing security measures, including

intrusion detection systems (IDS), fail to detect these threats,

necessitating a systematic approach to analyzing and exploit-

ing PLC memory. This paper presents a machine learning-

driven framework for PLC memory exploitation, identifying

critical regions vulnerable to unauthorized access and ma-

nipulation. Using extracted features such as entropy-based

and structural characteristics, we classify PLC memory into

exploitable segments, including metadata and control logic.

Our method enables precise targeting of PLC memory for

adversarial access, injection, and modification, operating inde-

pendently of PLC-specific semantics. By training on an M221

PLC, we demonstrate its generalization across architectures,

successfully exploiting PLCs with distinct instruction sets. We

evaluate our approach on three PLCs from two vendors, ac-

tively probing memory to elicit responses such as accept, deny,

halt, and compromise. The results expose inconsistencies in

memory protections across PLC architectures, reinforcing the

need for improved memory integrity in ICS environments. As

part of our research, we identified and disclosed a critical PLC

memory vulnerability (CVE-2024-11737)

1 Introduction

Industrial control systems (ICS) are the backbone of critical

infrastructure, governing processes in sectors such as energy,

manufacturing, and chemical industries [1, 2]. At the core

of these systems lie programmable logic controllers (PLCs),

responsible for executing automated operations. However,

PLC security has historically been neglected, making these

devices an attractive target for adversarial exploitation. While

network-based attacks on ICS have received significant atten-

tion, attacks targeting PLC memory remain a largely underes-

timated yet highly effective vector for system compromise.

Recent high-profile cyberattacks [3–8] demonstrate an evo-

lution towards more sophisticated ICS intrusions, moving be-

yond traditional network penetration to direct manipulation of

embedded controllers with specific timing and intended com-

mands [9–11]. Unlike network attacks, memory exploitation

bypasses communication-level defenses, enabling attackers

to manipulate PLC execution logic, inject persistent back-

doors, and alter system behavior at a fundamental level. Even

stealthy supply chain attacks can be carried out by embedding

malicious logic into firmware or modifying memory-based

control flows.

Despite its criticality, PLC memory remains one of the

least protected components in industrial systems [12]. Secu-

rity mechanisms such as intrusion detection systems (IDS)

focus on network-layer anomalies, leaving memory-based at-

tacks largely undetected. Furthermore, memory acquisition

and analysis are highly constrained by vendor restrictions, pro-

prietary formats, and device-specific architectures, limiting

the ability to systematically analyze PLC memory vulnerabil-

ities [13].

In this research, we propose a machine learning-driven

approach to PLC memory exploitation, systematically classi-

fying critical memory regions that can be targeted for adver-

sarial access, injection, and modification. Unlike traditional

forensic methods, our approach does not rely on PLC-specific

semantics, making it applicable across different architectures.

We train our model on an M221 PLC and successfully demon-

strate its generalization across multiple PLCs, even those with

distinct instruction sets.

We evaluate our method on three PLCs from two ven-

dors (i.e., Schneider Electric’s Modicon M221 and M241

and Allen-Bradley’s 1756), actively probing their memory to

elicit various system responses, including accept, deny, halt,

and compromise. Our findings reveal critical inconsistencies

in memory protections across PLC architectures, exposing the

feasibility of targeted memory exploitation. By demonstrating

these vulnerabilities, this work underscores the urgent need



for improved memory integrity protections in ICS environ-

ments while also providing a blueprint for future offensive

security research in PLC exploitation.

The remainder of this paper is structured as follows. Sec-

tion 2 provides essential background, outlining the challenges

of PLC memory analysis and attack feasibility. Section 3 de-

fines the threat model and attack vectors, detailing adversarial

strategies leveraged against PLC memory. Section 5 intro-

duces the selected machine learning features designed for

PLC memory classification, followed by Section 7.1, which

evaluates their effectiveness through comparative and corre-

lation analysis. Section 6 describes the experimental envi-

ronment, memory acquisition methods, and attack execution

strategies. Section 7 presents the results, analyzing attack

outcomes and their implications for PLC security. Section 9

provides an in-depth discussion of our findings, addressing

key limitations. Finally, Section 10 summarizes our findings.

2 Background and Challenges

Industrial control systems (ICS) rely on programmable logic

controllers (PLCs) to automate physical processes across crit-

ical infrastructure sectors. These PLCs operate within in-

dustrial networks, utilizing industrial communication proto-

cols over Ethernet to execute control logic and interface with

sensors and actuators, as shown in Figure 1. Unlike general-

purpose computing systems, PLCs are embedded devices with

constrained resources and minimal built-in security, making

them susceptible to targeted memory attacks.

Figure 1: PLC Overview

Control logic is developed externally using engineering

software before being deployed to PLCs over a network. This

software often integrates Human-Machine Interface (HMI)

functionalities, enabling operators to monitor and adjust indus-

trial processes remotely. Given that all control logic transfers

occur over industrial communication protocols, any compro-

mise in these interactions can lead to unauthorized access,

manipulation, or injection of malicious control logic.

To support execution, PLCs maintain a diverse set of mem-

ory structures, including execution logic, configuration data,

and system metadata. Among these, some memory regions

are of particular interest for adversarial operations. Critical

memory regions store execution-relevant data such as com-

piled control logic and system metadata, which, if manipu-

lated, could alter PLC behavior or cause system-wide failures.

Unlike generic data, these critical regions offer high-value

targets for memory exploitation, enabling persistent modi-

fication, stealthy backdoors, or direct control over physical

processes.

Despite the significance of PLC memory security, existing

protections are either absent or highly inconsistent across ven-

dors. Unlike network-based attacks, memory-based exploits

bypass communication-layer defenses and directly manipu-

late execution states, making them particularly stealthy and

difficult to detect. The lack of standardization in PLC mem-

ory structures further complicates security analysis, creating

a fragmented security landscape where attackers can exploit

vendor-specific inconsistencies.

2.1 Problem Statement

Extracting and analyzing PLC memory presents a critical at-

tack surface, yet traditional forensic techniques demand exten-

sive manual effort and provide limited insight into exploitable

regions. This research introduces a machine learning-driven

approach to systematically classify critical memory regions

for adversarial manipulation. By mapping these regions, we

enable precise targeting for access, injection, and modifica-

tion attacks, exposing fundamental weaknesses in PLC mem-

ory protection mechanisms. Our method demonstrates that

memory exploitation is feasible across multiple PLC archi-

tectures without reliance on PLC-specific semantics, signifi-

cantly broadening the attack surface for ICS threats.

2.2 Challenges

Executing effective memory exploitation on PLCs presents

several significant challenges. Unlike traditional IT systems,

PLC memory is highly fragmented, lacks standardization,

and often incorporates proprietary structures that complicate

both analysis and attack execution. Furthermore, attackers

must deal with inconsistent memory layouts, ambiguous

metadata structures, and countermeasures that hinder precise

targeting. The following challenges outline key obstacles

attackers face when attempting to exploit PLC memory.

Challenge 1: Memory Space Mapping in PLCs

PLCs integrate multiple chips, often combining embedded

memory with external components such as System-on-Chip

(SoC) architectures. These memory segments are mapped into

a unified address space, but the mapping strategy varies across



vendors. Without precise knowledge of memory segmentation,

attackers cannot reliably locate or manipulate critical memory

regions.

Furthermore, PLCs often rely on vendor-specific memory

layouts that lack standard documentation. This forces

attackers to either reverse-engineer the memory mapping

manually or perform blind, iterative testing to infer the

correct addresses—both of which introduce delays and

uncertainty in exploitation attempts.

Challenge 2: The Absence of Ground Truth

Unlike operating systems such as Linux, which have stan-

dardized memory layouts and well-documented file systems,

PLC memory lacks a universal structure. Each vendor defines

its own proprietary format, meaning there are no predefined

ground truth references to rely on when analyzing memory

dumps.

For attackers, this uncertainty poses a significant challenge.

Memory regions may shift across firmware versions, control

logic may be stored in different sections, and even metadata

structures can vary. As a result, an exploit developed for

one PLC may not be directly transferable to another model,

requiring additional reconnaissance and adaptability in attack

strategies.

Challenge 3: Every Data Segment Is a Potential Pointer

PLCs frequently use direct memory references to optimize

performance, meaning that many seemingly random data val-

ues may serve as pointers. Because most PLCs operate within

a 4GB memory space, these pointers are commonly 4-byte

values within the 0x00000000–0xFFFFFFFF range.

For attackers, this introduces a major difficulty: any 4-byte

sequence could potentially be a pointer. Since pointers do not

follow a strict pattern, a naïve overwrite attack risks breaking

the execution flow. Attackers must first identify valid pointer

structures and understand their reference hierarchy to craft

effective exploits.

Challenge 4: Identifying the Root of Execution

All PLC data is structured hierarchically, with metadata

guiding execution flow [14]. Upon boot, PLCs load data from

predefined regions, processing multiple layers of metadata

before executing control logic. However, the exact location

of the root metadata varies between devices, and any miscal-

culation in targeting can result in an ineffective or unintended

attack.

Attackers seeking to alter control flow or inject payloads

must precisely locate and manipulate these root metadata

entries. If an attack modifies secondary metadata instead of

the root reference, the exploit may be ignored or overridden

by the PLC’s internal processes.

Challenge 5: Leveraging RAP for Exploitation

The Redundant Address Pin (RAP) phenomenon [9]

presents a unique opportunity for adversaries. RAP creates

multiple memory regions that appear to contain the same data,

but only one holds the actual data. Since these redundant re-

gions are mapped within the same memory space, attackers

can abuse this behavior to redirect writes to controlled areas

while affecting execution-critical data.

By targeting a RAP-mapped shadow region instead of

modifying the primary control logic directly, an attacker can

inject malicious modifications in an indirect and stealthy

manner. However, this method is only feasible if RAP regions

can be reliably identified and their existence confirmed within

the target system.

Challenge 6: Targeting for Precise Exploitation

A major challenge in PLC exploitation is the lack of static

memory addresses for critical data. Control logic does not

always download in the same location. Each time a new con-

trol program is downloaded, the memory layout may shift

slightly [15, 16], introducing randomized offsets for critical

memory regions.

For an attacker, this presents a major problem: An exploit

must precisely target control logic memory—a misaligned

payload could result in a failed attack or an unintended denial-

of-service (DoS) condition. Even a single-bit misalignment

can degrade a sophisticated exploit into a simple DoS attack,

severely reducing its impact. To overcome this, attackers

must dynamically infer control logic locations using indirect

methods, such as memory heuristics, execution tracing, or

real-time reconnaissance techniques.

These challenges illustrate the complexity of PLC mem-

ory exploitation. Attackers must navigate fragmented mem-

ory layouts, infer undocumented structures, and execute pay-

loads under strict real-time constraints. Moreover, exploiting

vendor-specific memory quirks, such as RAP behavior, can en-

hance attack effectiveness by allowing stealthy modifications.

Understanding and overcoming these barriers is essential for

developing reliable and scalable PLC memory exploitation

techniques.

3 Threat Model and Attack Vectors

This section outlines the attack framework by defining the

assumed threat model, detailing the attack vectors used to

exploit PLC memory, and categorizing system responses un-

der adversarial conditions. First, we establish the attacker’s

capabilities and environmental constraints in the threat model.

Then, we describe the specific attack vectors employed to ma-

nipulate memory structures. Finally, we analyze how the PLC

reacts to these attacks in the PLC response taxonomy, which

classifies observable system behaviors during exploitation.



3.1 Threat Model

In this paper, we assume an attacker capable of accessing PLC

memory via an embedded proprietary protocol over Modbus.

Direct and indiscriminate memory access attempts are easily

blocked by system protections, requiring the attacker to em-

ploy a more strategic approach. To maximize the impact of

the attack, we first analyze the PLC memory using machine

learning techniques to classify different memory regions and

identify critical boundaries. This allows for precise targeting

of memory areas that can be manipulated to induce a desired

system state.

While a comprehensive attack covering the entire memory

space is conducted for evaluation purposes, the primary attack

strategy focuses on targeted exploitation of memory areas

classified through ML analysis.

3.2 Attack Vectors

The proposed attack consists of three distinct methods: access

(read), inject (write), and modification (write).

Access: The attacker attempts to read from memory to infer

structural properties. This includes accessing regions

classified as valid by ML analysis, targeting memory

boundaries for potential bypass mechanisms, and at-

tempting to read beyond established boundaries to elicit

unintended system behavior.

Inject: The attacker floods the PLC memory with arbitrary

writes, aiming to induce misoperation or force the sys-

tem into a halt state. Unlike ML-based manipulation

attacks, injection does not require prior memory analysis

and is applied indiscriminately, even to denied memory

addresses.

Modification: This assumes a more sophisticated adversary

capable of manipulating metadata values to cause crit-

ical failures or embed malicious code into executable

areas. Unlike inject attacks, modification attacks are se-

lectively executed on memory regions that were previ-

ously accepted during access attempts, ensuring precise

exploitation.

By analyzing PLC responses to targeted memory exploita-

tion, we establish a structured attack framework that not only

identifies exploitable memory regions but also categorizes

system behavior under adversarial conditions. This taxonomy

of responses enables a refined offensive strategy, bridging the

gap between reconnaissance and effective exploitation in ICS.

4 PLC Memory and Targets

As presented in Figure 2, the workstation and PLC interact

through engineering software designed to manage various

Workstation

Engineering Software

Design/Dev.

PLC

Processors

(RX, ARM, etc.)

Single Memory Space

ROMROMROMROMRAMRAMRAMRAM

Configure/Update

Monitoring (HMI)

Request

Response

Industrial Communication Protocol (Modbus)

Embedded Proprietary Protocol (UMAS)

Write(Download) Read(Upload)

SoC Chips

Firmware/OS Control Logic I/O DataConfig. File

Figure 2: Workstation and PLC Communication

control functions. The engineering software on the worksta-

tion acts as a bridge for legitimate control functions. However,

its reliance on proprietary industrial protocols introduces secu-

rity weaknesses, as attackers can repurpose these mechanisms

to manipulate PLC memory outside of normal constraints.

In this example, a Schneider Electric M221 PLC is depicted,

where the workstation and PLC communicate via industrial

communication protocols. These protocols facilitate the trans-

fer of control data, ensuring the correct operation of the PLC

in managing critical industrial processes. While Schneider

Electric utilizes its proprietary protocol (UMAS) for commu-

nication, this is not unique to Schneider [14, 17, 18]. Other

manufacturers, such as Allen-Bradley, use proprietary proto-

cols like PCCC [19], which are not publicly disclosed but are

designed for operational convenience.

The request/response communication structure shown in

the center also applies to the embedded UMAS protocol,

which enables the download and upload capabilities of the

PLC. Using UMAS Write commands, direct access to the

PLC’s memory space is granted, enabling the download of

control logic to the PLC. Typically, PLCs have two oper-

ational modes: Program mode, where the physical process

is halted to allow new program downloads, and Run mode,

where the process is active and downloads are restricted.

While official engineering tools restrict write operations dur-

ing Run mode, protocol-level write access remains available.

This inconsistency provides an attack vector for injecting

unauthorized control logic while avoiding standard security

controls.

Like modern mobile devices, the PLC integrates a SoC

architecture, consolidating various processing components.

Unlike traditional computing systems, PLC memory lacks

clear separations between execution-critical and temporary

data, allowing an attacker to overwrite essential functions

without triggering conventional integrity checks.

Our proposed technique aims to distinguish critical data

from the multitude of PLC data. We categorize all data types

present in PLC memory into four classifications: Metadata,



Code Data, Padding, Et cetera. Among these, critical data

includes the M and C categories, while P and E are treated

as general data with lower priority.

Metadata (M): Metadata structures define how PLC memory

is organized, including file tables, execution references, and

pointers. Pointers are a prime attack vector, as they control

memory navigation. Manipulating metadata enables execu-

tion hijacking, stealthy persistence, or privilege escalation.

Since metadata lacks universal standards, attackers must infer

structures dynamically, increasing the complexity of precise

targeting.

Code Data (C): Code data governs PLC behavior, including

compiled control logic, firmware, and raw opcodes. As PLCs

lack modern memory protections, modifying or injecting

code enables direct manipulation of physical processes. With

no runtime integrity checks, these modifications persist until

manually overridden, making code memory a high-value

attack target.

Padding (P): Padding consists of repetitive filler values (e.g.,

0x00, 0xFF) used for alignment or reserved space. Attackers

can abuse padding to hide payloads, evade forensic detection,

or induce unintended memory behaviors. As padding regions

may overlap with execution-critical data, distinguishing

benign padding from exploitable space is a key challenge.

Et Cetera (E): This category includes miscellaneous run-

time data, temporary buffers, and logging artifacts. While not

directly critical, these regions may expose execution traces,

aiding attack planning. Overlooked runtime variables could

also introduce unexpected entry points for indirect exploita-

tion [6, 20].

5 PLC Memory Features

Figure 3 outlines the process from raw memory acquisition to

the identification of potential exploitable regions, addressing

key challenges (C1-C5) through feature extraction and region

aggregation.

C1 PLCs integrate multiple chips within a single address

Single Memory Space
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•
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Figure 3: PLC Memory Analysis Pipeline

space, lacking a standard mapping scheme. This requires

dynamic inference to differentiate memory regions.

C2 With no standardized memory layout, we rely on protocol-

defined address fields to establish an initial reference for

segmentation.

C3 Since PLCs use direct memory references, any 4-byte

value may function as a pointer. Our features identify

and differentiate valid references.

C4 Execution flow is metadata-driven, but its location varies.

Depth and Indegree features help trace execution flow,

while others detect binary code regions.

C5 RAP regions share identical content, but only one is refer-

enced. Depth and Indegree distinguish valid references,

and Region Aggregation consolidates metadata to recon-

struct coherent memory structures.

By addressing these challenges, our method transforms raw

memory into structured insights, enabling precise exploitation

of PLC memory regions.

We designed our feature selection process to focus on pat-

terns emerging from differences between adjacent values,

similar to how CNN kernels detect spatial relationships in im-

ages [21]. While instruction sets may differ across PLCs, the

structural organization of 4-byte fields, such as registers and

commands, remains consistent in terms of positional align-

ment. By leveraging this property, our features capture un-

derlying relationships in memory, facilitating the identifica-

tion of critical regions. This approach enables the extraction

of metadata and structured data features using various info-

metrics [18], distinguishing control logic from non-critical

data structures. These features play a key role in overcoming

the challenges discussed earlier, providing a robust foundation

for memory classification and exploitation. A detailed break-

down of each feature is provided in the following sections.

5.1 Windows

Windows are crucial elements in dealing with byte-level bi-

nary data. Our proposed method also extracts features and

performs classification on a byte-level basis, so we have de-

fined the following three different windows as described in

Figure 4:

Primary window is set to 4 bytes and determines the size

of the data subject to feature extraction. The reason for setting

it to 4 bytes is that, in all known PLC memory forensic studies,

without exception, any discovered pointer value was 4 bytes

in size [11, 15, 18, 22–24]. This is because even though PLCs

manage SoC memory within a single range, the total size does

not exceed 4GB. However, extracting features from 4-byte

chunks of data to represent a region is highly challenging.

Therefore, we have defined a second window.
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…𝑊𝑖𝑛𝑑𝑜𝑤 𝑊𝑖𝑛𝑑𝑜𝑤 𝑊𝑖𝑛𝑑𝑜𝑤 𝑊𝑖𝑛𝑑𝑜𝑤 𝑊𝑖𝑛𝑑𝑜𝑤 …
Block Window

Figure 4: Feature-based Comparative Analysis on Different

Architectures and Regions

Surrounding Window is currently set to 4bytes, this win-

dow size must be a multiple of the Primary Window size. It is

used to compare the data subject to feature extraction with the

preceding and following data. For instance, byte correlation

involves calculating the features of the current data along

with the preceding and following bytes. This significantly

impacts the total computation time, and feature extraction

can take over 10 hours for 1GB of memory depending on

computational power.

Block Window assumes the size of a data block, also

known as a data chunk. Data may not start from the first

byte, and there might be bitmaps, padding, file types, sizes,

magic numbers, etc. before valid values appear. This window

size is used to search the subsequent area to verify the validity

of data such as pointers. For example, when checking if a

pointer is valid, the system not only checks the data value but

also scans the following area based on this window size.

5.2 Entropy

Entropy is a measure of randomness or unpredictability in

a dataset, and it is widely used in various fields, including

digital forensics, to identify regions of interest within binary

data. In the context of PLC memory analysis, entropy can help

distinguish between structured data, such as control logic or

other critical data, and unstructured or less significant data [25,

26].

To calculate this feature, we analyze the frequency distribu-

tion of byte values within a block window. First, we count the

occurrences of each byte value in the primary window. Then,

we calculate the probability of each byte value by dividing its

frequency by the total number of bytes in the block. Using

these probabilities, we compute the entropy, which quantifies

the level of randomness in the data segment as:

H(Wi) =−
255

∑
x=0

P(x)log2P(x) (1)

5.3 N-gram

Applying N-gram to byte data is similar to measuring byte

frequency, with the key difference being the measurement of

the frequency of specific combinations of bytes of size N to

achieve more precise targeting. When certain combinations

hold significant meaning for PLCs, this feature can become

a sniper rifle. If N-gram is applied based on a database con-

structed through reverse engineering, it becomes a highly

precise feature for identifying code data.

However, we did not use a database obtained from primal

research [18]. Instead, we leveraged the distribution obtained

from entropy probability calculations. This approach ensures

that the feature remains effective for unknown PLCs in the

future, as it avoids dependency on specific instruction sets [27,

28]. By using entropy distributions, our N-gram feature can

dynamically adapt to various PLC environments, making it a

robust tool for forensic analysis without relying on predefined

datasets.

5.4 Depth and Indegree

Depth and indegree are features derived from data suspected

to be pointers. According to Challenge 3, if the memory space

range is 4 bytes, and the memory space size is 4GB, every

4-byte value could potentially be a pointer. During the feature

extraction process, if the data is not identified as padding, we

first calculate the depth and indegree.

Depth measures the levels a data point references into the

memory, essentially how deep the pointer chain goes.

Indegree measures how many times a specific data point,

which is the data from the primary window, is referenced

by other data points, indicating the level of referred.

For example, consider an offset o with a value v defined

as a data point Dn : o(v). Let D0 be the data point at off-

set 0x1FED4 containing the value 0x15650 is expressed as

0x1FED4 D0 : 0x1FED4(0x15650). The depth and indegree

tracking would proceed as follows:

[Depth, Indegree]Dn: Offset o (Value v)

[3,0]D0: 0x1FED4 (0x15650)

[2,1 ≤]D1: 0x15650 (0x7044F6C)

[1,1 ≤]D2: 0x7044F6C (0xAAAA)

[0,1 ≤]D3: 0xAAAA (0x0000 )

In this chain of data points, the depth from D0 to D3 starts

at three levels deep and decreases to one level. For indegree,

the minimum value is represented as 1 ≤. This is because

each identified data point has at least one reference, but as

the window explores the memory space, additional references

from other metadata can be discovered. By evaluating these

features, we can better understand the structure and relevance

of different data points within the PLC memory space, helping

to identify critical data and the overall RAP structure.

5.5 Byte Correlation

Byte correlation can be categorized into two primary types,

measured by window size, which assesses the byte distance



or variation between successive prior and subsequent byte

streams. The first feature measures the byte stream distance

among data units, while the second feature measures quanti-

fying the distance between extracted info-metrics.

Due to the inherent nature of metadata having a prede-

fined order and specification of information, the values mea-

sured through byte correlation tend to be constant. For exam-

ple, inode, prominent metadata of Ext4, stores four times-

tamps—access, modification, creation, and deletion—in a

continuous sequence for file management [29]. Dewald et

al. [30] utilized the fixed relationships between these times-

tamps, each having distinct meanings and timings, to propose

a technique for extracting metadata.

As exemplified earlier, this feature is employed to differen-

tiate metadata within consecutive byte streams. It identifies

specific correlations such as sequential, dependent, or propor-

tional relationships between byte streams. These correlations

are utilized to distinguish metadata, reflecting their distinct

characteristics as:

C(Wi) =
S

∑
j=1

N

∑
k=1

(|bi
j −bi−k

j | • |H((Wi))−H(Wi−k)|+

|bi
j −bi+k

j | • |H((Wi))−H(Wi+k)|)

(2)

Where:

• k denotes the position of the surrounding windows.

• |bi
j −bi−k

j | captures the difference between correspond-

ing byte positions.

• |H((Wi))−H(Wi−k)| represents the difference in entropy

values.

5.6 Byte Pattern

This feature compares the bit similarity between the surround-

ing window and the primary window, reflecting a localized

byte frequency. Due to the multiple intermingled chips speci-

fied in Challenge 1, it is generally difficult to identify patterns

using a byte frequency approach typically applied to single

files. However, it is still necessary to detect recurring patterns

in environments where specific instruction (function) codes,

such as metadata and ICS payloads, are used. Therefore, we

compare the bit similarity between windows as a measure of

localized byte frequency and record it as a byte pattern feature

for the data corresponding to the primary window as:

B(Wi) =
S

∑
j=1

N

∑
k=1

(popcnt(bi
j ⊕bi−k

j )+ popcnt(bi
j ⊕bi+k

j ))

(3)

Where:

• k denotes the position of the surrounding windows.

• ⊕ represents the XOR operation.

• popcnt(x) counts the number of set bits in the binary

representation of x.

6 Experimental Setup and Attack Execution

This section outlines the experimental setup, memory acquisi-

tion process, machine learning-based classification, and the

execution of targeted memory attacks. As summarized in Ta-

ble 1, our experiments involved three PLCs: M221, M241,

and ML1400. These PLCs share both commonalities and

key differences. M221 and M241 belong to the same ven-

dor family (Schneider Electric Modicon series), while M241

and AB1756 share the ARM-based architecture. Additionally,

each PLC requires a different engineering software suite for

control logic deployment, resulting in significant variations

in memory layout even between closely related models like

M221 and M241.

6.1 Memory Access Profiling and Acquisition

As shown in the Access column in Table 1, memory access

profiling and acquisition were conducted using different meth-

ods depending on the PLC model. The objective was twofold:

first, to assess access permissions by probing memory regions

using protocol-based read operations; second, to retrieve ac-

cessible memory contents for further analysis and attack exe-

cution.

For Schneider Electric PLCs (M221, M241), the proprietary

UMAS protocol was utilized, specifically leveraging the Read

function (0x28). The retrievable memory range varied across

models due to differences in memory segmentation and access

enforcement. In contrast, the Allen-Bradley AB1756 does not

support direct address-based memory access via the PCCC

protocol. Instead, memory was extracted via a JTAG interface,

revealing unique characteristics such as Redundant Address

Pin (RAP) regions, which impact attack feasibility.

The access constraints and retrieval findings for each PLC

are detailed below:

M221 : The protocol permitted memory retrieval up to

0xFFFFFFFF (4GB), the maximum addressable range.

M241 : While M241’s accessible address space extended

up to 0x4FFDD000 (1.24GB), the effective retrievable

memory was limited to 64MB (0x4000000). Two key

factors contributed to this conclusion:

Beyond the 64MB region, all accessible addresses re-

turned 0x00 values, leading to their classification as

padding. While some addresses beyond this range ex-

hibited successful read access, others were denied, but
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Figure 7: Visualization of Memory Dense of Three PLCs

since these regions did not contain meaningful memory

content, they were excluded from our automated analysis

and attack scope.

According to Schneider Electric’s M241 Logic Con-

trollers Programming Guide, the official memory organi-

zation document explicitly states that the system and user

memory areas together comprise 64MB of RAM [31].

ML1400 : Unlike M221 and M241, Allen-Bradley AB1756

does not permit conventional memory acquisition via its

proprietary PCCC protocol, as it structures memory into

predefined "items" rather than allowing direct address-

based access. Instead, we acquired ML1400’s memory

via JTAG debugging.

Figure 7 reveals that AB1756 exhibits large RAP (Redun-

dant Address Pin) regions, each with a size of 0x100000

(16MB). Machine learning analysis determined that only

the first RAP region contains real memory, while the

remaining regions result from memory mirroring effects

due to the RAP phenomenon.

This observation aligns with hardware-level analysis

of the AB1756 board’s address pins, which identified

"Don’t Care" bits (A24 −A26) [15]. These bits indicate

that memory addressing beyond a certain range is un-

defined, reinforcing the conclusion that only 16MB of

ML1400’s memory is physically valid while the remain-

ing RAP regions (152 MB) are just a replica of address

pin redundancy.

The memory acquisition results in Figure 7 reveal RAP

structures across M221, M241, and ML1400. In M221, RAP

regions are magnified (as indicated in the figure) due to large

empty spaces, emphasizing data density. The repeating re-

gions indicate RAP areas, where read operations return iden-

tical data, but writes affect all linked regions simultaneously,

allowing the RAP structure to be inferred based on modified

address ranges and sizes. Localized RAP regions in M221

and M241 suggest redundancy in lower-order address pins,

whereas ML1400’s widespread RAP effects indicate redun-

dancy in higher-order pins.

6.2 SVM-Based Target Identification

The memory contents of each PLC were analyzed using SVM-

based classification, identifying critical memory regions, in-

cluding metadata (M) and executable code segments (C). As

summarized in Table 2 under the Memory Distribution row,

the classification results revealed a predominant presence of

padding regions across all three PLCs. Specifically, regions

filled with 0x00, 0xFF, 0x55 and 0xEE constituted the major-

ity of memory contents.

As depicted in Figure 7, M221’s excessive padding ob-

scured meaningful data structures, making direct visualiza-



PLC Model Vendor Series CPU Architecture Acquisition Attack Access Detect

M221 Schneider Electric Modicon Renesas Yes Yes UMAS Protocol Yes

M241 Schneider Electric Modicon ARM Yes Yes UMAS Protocol Yes

AB1756 Allen-Bradely ControlLogix ARM Yes No JTAG Yes

Table 1: PLC Experiment Summary

tion ineffective. Thus, to facilitate meaningful memory den-

sity comparison across PLCs, the figure focuses on an ex-

panded view of the regions where executable content is con-

centrated—specifically, the RAP (Redundant Address Pin)

regions.

The training dataset consisted of approximately 60 con-

trol logic programs [32, 33] as Code. For every control logic

sample, three associated metadata datasets—Configuration

1, Configuration 2 [11], and undefined metadata(around

0x200-0x500)—were included, totaling around 180 in-

stances. Additionally, the dataset incorporated over 60 control

logic project files compressed in 7z format, classified as Etc

data, ensuring a diverse representation of structured and un-

structured memory content. This comprehensive training set

reinforced the classifier’s ability to distinguish metadata, code,

and auxiliary data within the memory space, improving the

robustness of our segmentation and attack planning.

Since SVM classification operates on a per-window basis,

post-processing is required to refine the results. Each classi-

fied window belongs to a larger memory segment, and the

segmentation of these windows into memory chunks is de-

termined based on the continuity of critical data regions (M,

C). The proportion of metadata (M) or code (C) within a

given chunk directly influences its classification as a distinct

memory region.

This segmentation process is integral to attack execution.

As shown in Figure 8, we aggregating critical memory region

boundaries, we establish attack priorities, guiding subsequent

write-based (0x29) memory manipulations. These targeted

attacks are informed by SVM-derived classifications, ensuring

that critical areas—such as metadata structures and executable

control logic—are prioritized for exploitation.

Memory Region Aggregation Results

Boundaries DeniedSVM Results (M, C, P, E) RAP

Target 

Identification

M241

M221

UMAS Write (0x29)

Read responses

== Denied

Attack Execution Process

Adaptive Execution ... 0x9B2FFF 0x9B3000 …

Boundary

Boundary Read (2byte)

UMAS Read (0x28)

Critical Memory Regions

(M) Relative-change

(C) Code Injection

(P) Padding Exploitation

Figure 8: PLC Memory Attack Strategy

6.3 Attack Execution Strategy

As shown in Figure 8, the attack execution targeted PLCs

using the UMAS protocol. Consequently, AB1756 was ex-

cluded from active attack attempts due to its PCCC-based

memory management, which does not permit direct memory

reads/writes in the same manner. For M221 and M241, the

attack leveraged UMAS Read (0x28) and Write (0x29) func-

tions. Read was primarily used to evaluate access permissions

across memory regions, while Write was utilized for direct

memory manipulations.

The attacks were designed based on the ML-driven tar-

get identification and memory region aggregation results.

The classified memory types—metadata (M), code (C), and

padding (P) provided a structured attack surface, allowing for

targeted exploitation strategies. Attack vectors were catego-

rized into five key approaches, focusing on memory corrup-

tion, boundary analysis, and privilege escalation.

(M) Relative-Change Attack Metadata regions were tar-

geted for modification attack due to their high sensitivity

to minor alterations. Since metadata structures often

manage execution flow, even a ±1 modification could

result in execution failures. Given that memory manage-

ment systems typically operate on 4-byte units, shifting

the pointer value by a single byte in a metadata structure

could cause severe disruptions, leading to immediate

PLC halts.

(C) Code Injection Identified code regions were subjected

to data modification by surrounding code data. To avoid

immediate detection, the attack leveraged local data du-

plication—copying adjacent instructions or known exe-

cutable structures and inserting them into the code region.

This was designed to induce either execution failures

(halt) or subtle operational anomalies, classified as com-

promise (Cmpr), where the PLC continues to operate but

exhibits unexpected behavior.

(P) Padding Exploitation Padding regions were analyzed

for their potential use in stealthy attacks. Unlike meta-

data and code, padding spans vast memory areas with

low entropy, making it an ideal space for covert payload

storage. The attack involved modifying dispersed sec-

tions of the padding region in a block-window approach

and subsequently monitoring if the data was altered by

the PLC within a short timeframe. This test determined

whether padding regions were actively overwritten, al-

lowing an attacker to assess their viability for storing

malicious payloads persistently.



Write-Based Access Violation For cases where read (0x28)

access attempts were denied but the PLC remained oper-

ational, write (0x29) functions were used to probe fur-

ther. If a memory region rejected read attempts but still

accepted write operations, it indicated a misconfigured

access control mechanism. This approach aimed to es-

calate memory access privileges by leveraging potential

discrepancies between read and write permissions.

Boundary Read Probing This attack focused on accessing

the precise boundaries between classified memory re-

gions. Memory segmentation inconsistencies could al-

low boundary-crossing requests to trigger unintended

behavior. Using 2-byte precision, access attempts were

made at segment edges to detect potential privilege esca-

lations or operational disruptions caused by ambiguous

memory segmentation policies.

6.4 PLC Response and Impact

The expected PLC’s responses to memory attacks are catego-

rized into four distinct outcomes:

Accept : The request is successfully processed, and the PLC

returns a valid response.

Deny : The request is rejected, and the PLC responds with

an error code via the protocol.

Halt : The PLC ceases operation and fails to respond, indi-

cating a system crash or critical failure.

Compromise : The PLC enters an unstable state, potentially

exhibiting unintended behavior between an accept and

halt response. Unlike halt, compromise does not nec-

essarily result in an immediate system stop, and unlike

accept, it may cause unintended state changes. This reac-

tion is only classified as compromise if the attack targets

memory regions that are actively used by the PLC, such

as overwritten metadata or control logic execution. If the

affected memory is not proven to be actively used, the

response is categorized as either accept or halt based on

the observed system behavior.

By systematically executing and analyzing these attacks,

we identified architectural weaknesses across different PLCs,

highlighting inconsistencies in their memory protection mech-

anisms.

7 Experimental Results and Evaluation

This section evaluates various aspects of the proposed meth-

ods. First, we assess the feature selection process to ensure

the extracted features accurately distinguish critical memory

regions while maintaining independence for machine learning

applications. Next, we verify the SVM classification results,

demonstrating that the model generalizes across different PLC

architectures despite being trained on a single device. Finally,

we analyze memory attack outcomes, highlighting the PLCs’

responses to targeted read and write operations, revealing

vulnerabilities in access control mechanisms.

7.1 Feature Evaluation

To evaluate the effectiveness of the selected features, this

section conducted a comparative analysis across different

PLC architectures and a statistical evaluation of feature

independence using Pearson correlation.

Feature-Based Comparative Analysis

Figure 5 illustrates a comparative analysis of memory con-

tent between two PLCs that employ entirely different proces-

sors, examined from a feature perspective. This comparison

demonstrates how features operate in practical memory exam-

ples and evaluates their effectiveness in capturing meaningful

patterns and relationships.

As introduced in Section 5, the features are represented in

the figure by circled letters, with C. N-gram, E. Byte Corre-

lation, and F. Byte Pattern having been defined. However, B.

Entropy, which intuitively reflects complexity, and D. Depth

and Indegree, which are not extracted from relationships be-

tween windows, are not addressed in this section.

In an ARM(Advanced RISC Machine) architecture, shown

on the left side of Figure 5, little-endian formatting results in

the most significant byte (MSB) of a 4-byte sequence corre-

sponding to the instruction. This leads to a distinct clustering

of values in the binary code region, a phenomenon indepen-

dent of processor type. Similarly, Renesas architecture demon-

strates analogous clustering. While the exact values may vary

depending on the instruction set, the assignment of unique

identifiers, such as register numbers, within PLCs perpetuates

value repetition. Even when transitions to new windows with

higher MSB values occur, the remaining three bytes often

exhibit minimal variation from preceding windows. The main

reason for this assumption is that a 4-byte window aligns with

the instruction sets of all PLC processor architectures and lies

in the fact that most modern processors are based on 16-bit

(2-byte) or 32-bit (4-byte) systems. Since these architectures

operate on multiples of these sizes, a window size that is a

multiple of these base units inherently ensures the utility of

this feature.

The C. N-gram feature, while often yielding zero values

more frequently than other features, delivers a powerful effect.

In binaries where data is arranged according to specific logic,

such as code regions, the repeated use of the same variable is

quite common. For instance, assigning a value to a specific

register and performing operations often results in placing

the same value at the same location. Figure 5 represents this

phenomenon as bold within the CISC architecture.

Figure 6 provides a more detailed view of cases where the C.



M221 M241 *ML1400

Meta Code Padding ETC Meta Code Padding ETC Meta Code Padding ETC

Memory Distribution (†W) 4697 5559 (99.88%) (0.12%) 7522 28770 (77.31%) (21.83%) 669 2852 (84.49%) (15.45%)

*this region is estimated based on the first detected RAP region, which has the highest concentration according to SVM results.

†W: Count by number of windows.

Table 2: Summary of Memory Classifications Across PLCs

N-gram feature is frequently observed. Programs based on the

ARM architecture, as shown on the left, tend to exhibit highly

repetitive structures, which is why N-grams are commonly

used in binary detection [9, 18, 34]. On the right, the Renesas

architecture, based on CISC, presents a more complex binary

structure, but it is not so different that N-grams fail to be

detected altogether.

The E. Byte Correlation feature, computed across 4-byte

windows (w), effectively identifies sustained ranges of val-

ues within the RISC-based ARM architecture. Despite differ-

ences in absolute values between ARM and Renesas binaries,

the feature highlights a shared tendency of localized range

clustering, enabling comparative analysis. Conversely, in the

upper-right region of the CISC-based Renesas architecture,

the three w do not exhibit similar rightmost byte values. While

the before w and current w share similar values, the next w

deviates significantly, making it challenging to extract distin-

guishing patterns for code detection using Byte Correlation

alone. However, this limitation is mitigated by complementary

features.

The F. Byte Pattern feature, in contrast, provides finer gran-

ularity by identifying byte-level patterns within each window.

This facilitates pinpointing cases where instruction sets and

associated parameters occupy the same positions across bi-

naries. Such a granular analysis is essential for identifying

recurring instruction patterns and associated metadata within

the PLC memory.

Integration with Byte Correlation and Byte Pattern

Features The features defined earlier—Byte Correlation and

Byte Pattern—play pivotal roles in this evaluation. Byte

Correlation reveals proportional or sequential relationships

in binary streams, while Byte Pattern captures localized

byte frequency dynamics. Together, these features facilitate

comprehensive comparisons across processors, transcending

architectural variations to highlight fundamental patterns in

PLC memory.

Pearson Correlation Analysis of Features

The Pearson correlation analysis shown in Fig. 9 highlights

important insights into the relationships among the features.

The Pearson correlation coefficient rxy, calculated by the

formula below, measures the linear relationship between two

variables x and x, where xi and yi represent the individual

values of two different features, and x and y are their respective

means. This formula helps determine the degree to which the

features vary together.

Figure 9: Pearson Correlation Between Features

rxy =
∑

n
i=1(xi − x)(yi − y)

√

∑
n
i=1(xi − x)2

√

∑
n
i=1(yi − y)2

(4)

Infometrics, which combines Entropy and N-gram, shows

a positive correlation with both, though the correlation was

relatively weak (0.11 with N-gram and 0.43 with Byte-

Correlation). Despite the modest correlation, both Entropy

and N-gram were deemed effective features to include in the

analysis. The evaluation using Pearson correlation further re-

veals that N-gram is a highly independent feature, as indicated

by its low correlations with the other features. This suggests

that in PLC memory regions, where repetitive byte values are

prevalent—such as padding or non-critical areas—N-gram

remains unaffected by other features, reinforcing its indepen-

dence.

Since Byte-Pattern measures the repetition of bit similar-

ity across the data, it is closely related to the byte values

themselves. As a result, it shows a negative correlation with

Infometrics (-0.5), yet still maintains sufficient independence

to be valuable in the analysis. Its correlation with Entropy indi-

cates that regions with higher value (as measured by Entropy)

tend to show more repetition in byte patterns, aligning with

the expected relationship between randomness and pattern

distribution. However, the relatively low correlation values

suggest that Byte-Pattern and the other features provide com-

plementary information rather than redundant insights. As a

result, evaluating the degree of correlation among the features

using Pearson correlation, we can conclude that all features

were qualified to be used in the machine learning model.



7.2 SVM Results Verification

The memory contents of each PLC were analyzed using SVM-

based classification, identifying critical memory regions, in-

cluding metadata and executable code segments. The Detect

column in Table 1 indicates whether these classified regions

were validated through external tools such as binwalk [35].

Successful detection confirms that our classification aligns

with actual binary structures, ensuring that code regions iden-

tified via machine learning genuinely contain firmware, com-

piled logic, or executable instructions rather than random or

misclassified data. This classification and verification pro-

cess is crucial for attack execution. By accurately mapping

executable memory regions, targeted attacks can be designed

to manipulate control logic, induce malfunctions, or trigger

unintended PLC states.

Furthermore, Table 3 includes a Ground Truth column,

which represents verified data obtained through manual foren-

sic analysis or officially documented sources, such as vendor

memory layouts. These ground truth values serve as a base-

line for evaluating the correctness of our SVM classifications

and attack outcomes, ensuring that identified memory regions

align with the actual structure and behavior of each PLC.

Notably, padding occupied a substantial portion of the

total memory across all PLCs, particularly in the M221,

where 99.8% of the acquired memory space was classified

as padding. For this reason, Figure 7 highlights the memory-

dense RAP region, allowing a comparative analysis of struc-

tural similarities across different PLCs.

7.3 Memory Attack Outcomes

Table 3 details the PLC responses to read (0x28) and write

(0x29) operations, highlighting vulnerabilities in different

memory classifications.

The effectiveness of the proposed attack methodology was

evaluated by executing read (0x28) and write (0x29) opera-

tions against classified memory regions. Table 3 details the

observed responses, illustrating how different PLC architec-

tures handle unauthorized memory manipulations.

For the M221, memory writes targeting metadata regions

such as JumpTable and Configuration (Conf) consistently re-

sulted in PLC halts, confirming that even minor perturbations

in metadata structures induce execution failures. Similarly,

control logic modifications led to compromised states, where

the PLC continued operating but exhibited unintended be-

havior. RAP regions were successfully manipulated, demon-

strating that redundant address mappings enable indirect yet

persistent alterations to memory.

In contrast, M241 exhibited more restrictive access con-

trols, with large portions of memory returning deny or halt

responses. Notably, a segment spanning from 0xC94000 to

0x4000000 contained 284 distinct 0x1000-sized blocks that,

upon write attempts, triggered immediate PLC halts. Despite

these restrictions, a 2.9MB region at 0x9B6000 permitted

modifications that induced compromise states, indicating par-

tial execution control. These areas and PLC patterns, which

are also listed in Appendix A, are in the process of submitting

a CVE vulnerability report.

The ML1400, due to its proprietary PCCC-based memory

structure, did not permit protocol-based read or write oper-

ations. However, JTAG memory acquisition confirmed the

presence of RAP effects, with only the first 16MB of mirrored

memory containing unique data. This structural redundancy

aligns with previous hardware-level analyses of address pin

behaviors, further supporting the feasibility of leveraging RAP

regions for stealthy attacks.

Ground Truth Range (hex) Size % Read Write Predicted

M221

JumpTable 8000 - C90B Success Halt 22.0% (M)

F9B0-FEC3 Success Halt 15.9% (M)

Conf1 1FF3A 1FFFF Success Halt 14.3% (M)

Conf2 7044F6C - 70567FF Success Halt 9.8% (M)

RAP 70C4F6C - 70D67FF Success Halt 9.8% (M)

RAP 7144F6C - 71567FF Success Halt 9.8% (M)

RAP 71CCF6C - 71D67FF Success Halt 9.8% (M)

Control Logic 701E0A4-701E337 Success Compromise 86.7% (C)

M241

0- 660000 6.4 MB 10% Success Deny 0.68% (C)

ARM binary 660000- 9B3000 3.3 MB 5.1% Success Success 0.85% (C)

9B3000- 9B4000 4 KB - Deny Halt -

9B4000- 9B5000 4 KB - Success Success

9B5000- 9B6000 4 KB - Deny Halt -

9B6000- C94000 2.9 MB 4.5% Success Compromise P

*C94000- 4000000 51.4 MB 80% 284 Deny & Halt

4000000- D760000 -

D760000-4FFDD000 Success -

4FFDD000-FFFFFFFF Halt

*This region is omitted for brevity, more details in appendix A.

Table 3: Observed PLC Responses to Memory Attacks

8 Related Works

PLCs have received growing attention from the security com-

munity due to their non-standardized architecture and mem-

ory layouts. Prior works have explored PLC vulnerabilities

by reverse engineering control logic [9], manipulating run-

time state [10], and analyzing authentication protocols [14].

However, few studies have investigated PLC memory at a

structural level using machine learning.

Memory acquisition techniques for PLCs have traditionally

relied on JTAG access [15], firmware extraction [23], or

protocol-based memory access [11,22]. While these methods

have enabled static analysis, they do not offer automated clas-

sification or fine-grained profiling of memory semantics. Re-

cent work such as [22] introduced a generic memory forensics

framework for PLCs, but lacked the use of learned patterns or

behavior-based evaluation.

Our work draws on and extends these efforts by introduc-

ing a machine-learning-driven approach to classify memory

regions across heterogeneous PLC platforms. During this

process, we discovered that writes to certain addresses also

affected disjoint memory regions—an instance of potentially

exploitable memory aliasing [36], later formalized as Redun-

dant Address Pin (RAP). While RAP was first named and

exploited in our prior work [9], its initial discovery originated



from the experiments presented here.

Beyond PLC-specific, our classification framework shares

conceptual similarities with prior research in binary similarity

and architectural inference. Techniques such as semantics-

aware function recognition [37], binary code similarity learn-

ing [38], and discovRE [39] share conceptual ground for mem-

ory classification, which abstracts low-level binary differences

across architecture to detect functional similarity. While [40]

provided an early attempt to categorize and implement mem-

ory attacks on PLCs, highlighting foundational risks in mem-

ory management. cpu_rec.py [41] leverages n-gram features

to infer CPU architectures, similar in spirit to our use of sta-

tistical patterns for memory domain inference.

To our knowledge, this is the first work to apply machine

learning for fine-grained memory classification across PLCs

in a security context, while also validating its results through

empirical side effects such as PLC halts.

9 Discussion

Our approach adopts a 4-byte window as the default size

for analyzing memory structures, primarily because pointer

values are conventionally stored in 4-byte segments. This de-

cision is not solely based on our manual forensic analysis of

the M221 PLC but is a well-established convention in mem-

ory management systems with constrained storage capacities,

such as legacy filesystems. Moreover, the UMAS protocol’s

address field is structured as 4 bytes, reinforcing the natural

alignment of this choice.

However, if the 4-byte window presents a limitation in spe-

cific attack scenarios—such as when targeting a PLC with a

proprietary protocol using different field sizes—our method al-

lows for dynamic adjustments. The window size can be freely

modified by the proprietary protocol specifications, making it

a matter of time rather than a fundamental constraint.

Although our features have been extensively evaluated

through multiple methodologies, including comparative anal-

ysis and ML-driven validation, they may still be perceived as

constrained in scalability. A comparable historical reference

is the evolution of filesystems—early versions like Ext2 had

metadata structures similar to modern PLC memory, relying

on direct pointers [42]. However, with the introduction of

Ext3, indirect pointers enabled more flexible memory man-

agement, and Ext4 adopted extents for handling large-scale

files [29].

Despite these advancements in general-purpose storage,

PLC memory remains fundamentally different. PLCs are de-

signed as hard real-time systems, where every aspect—from

RTOS optimizations to execution timing—is tuned for in-

dustrial process stability. Unlike general computing environ-

ments that necessitate scalable storage, PLCs have no require-

ment (or feasibility) for large-scale memory expansion due to

strict real-time constraints. Consequently, our method remains

highly effective for current and future PLC architectures, as

their fundamental memory limitations will persist, ensuring

long-term applicability of our exploitation framework.

All Halt and Compromise (Cmpr) occurrences recorded

in Table 2 and Table 3 represent the minimum observed in-

stances. These values are based on actual experimentation

with PLC memory responses, but conducting exhaustive at-

tack trials across all possible cases was infeasible due to the

time-consuming nature of rebooting and reconfiguring the

PLC after each halt. As a proof of concept, the M221 and

M241 PLCs exhibited over 500 unique instances of halts

and compromises, demonstrating that our attack method is

both practical and highly threatening. Notably, the machine

learning-based memory targeting approach proved effective

despite the absence of prior manual analysis—particularly for

the M241, where even the CPU architecture was not explicitly

known. This approach has already been validated through dis-

closed and ongoing CVEs, with recommendations announced

in March 2025 and reported CVSS scores exceeding 9 [43].

Moreover, our results confirm that even a basic Read function

is sufficient to induce PLC halts, underscoring the critical

security risks posed by proposed methods.

10 Conclusion

This paper demonstrated a machine learning-driven PLC

memory exploitation framework, leveraging proprietary

protocol-based access to systematically analyze and target

critical memory regions. Our approach successfully classified

metadata, code, padding, and other data regions using an SVM

model trained on a single PLC, yet generalized effectively

across different architectures and vendors.

Through attack execution via the UMAS protocol, we sys-

tematically probed and manipulated PLC memory, resulting

in deny, halts and compromises, across multiple PLCs. No-

tably, the Read function alone was sufficient to induce PLC

failures, exposing fundamental weaknesses in memory access

control. Our experiments further revealed the Redundant Ad-

dress Pin (RAP) phenomenon exists among different vendor

PLCs, which adversaries could exploit to perform stealthy

and sophisticated attacks.

By evaluating PLC responses across different attack sur-

faces, we uncovered significant inconsistencies in memory

protection mechanisms, highlighting the urgent need for en-

hanced security measures in industrial control systems. These

findings have resulted in both disclosed and ongoing CVE re-

ports, reinforcing the necessity for stricter access enforcement

and runtime integrity verification [43].

Our work underscores the practicality and severity of

memory-based PLC attacks, demonstrating that even basic

read and write operations can subvert device integrity. Fu-

ture research should explore adaptive memory defenses that

dynamically mitigate such threats, ensuring the resilience of

critical infrastructure against emerging adversarial techniques.
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A Appendix

No. Ranges

001-004 9B3000-9B4000 9B5000-9B6000 C94000-C95000 C97000-C98000

005-008 C9A000-C9B000 C9C000-C9D000 CB5000-CB6000 CB8000-CB9000

009-012 CBB000-CBC000 CBE000-CBF000 CC1000-CC2000 CC4000-CC5000

013-016 CDD000-CDE000 CE0000-CE1000 CE3000-CE4000 CE6000-CE7000

017-020 CE9000-CEA000 CEC000-CED000 DF4000-DF5000 DF8000-DF9000

021-024 EFE000-EFF000 F00000-F01000 F14000-F15000 F17000-F18000

025-028 F4E000-F4F000 F51000-F52000 F66000-F67000 F69000-F6A000

029-032 F72000-F73000 F76000-F77000 F7A000-F7B000 F82000-F83000

033-036 FF6000-FF7000 FF9000-FFA000 1004000-1005000 1007000-1008000

037-040 1009000-100A000 101A000-101B000 101C000-101D000 102D000-102E000

041-044 102F000-1030000 1040000-1041000 1042000-1043000 1053000-1054000

045-048 1056000-1057000 105B000-105C000 105E000-105F000 1063000-1064000

049-052 1066000-1067000 1069000-106A000 106C000-106D000 106F000-1070000

053-056 1072000-1073000 1083000-1084000 13F1000-13F2000 13F7000-13F8000

057-060 13FA000-13FB000 1400000-1401000 1403000-1404000 1414000-1415000

061-064 1419000-141A000 141C000-141D000 141F000-1420000 1425000-1426000

065-068 1428000-1429000 142E000-142F000 1431000-1432000 1437000-1438000

069-072 143A000-143B000 1440000-1441000 1443000-1444000 1449000-144A000

073-076 144C000-144D000 1452000-1453000 1455000-1456000 145B000-145C000

077-080 145E000-145F000 1464000-1465000 1467000-1468000 146D000-146E000

081-084 1470000-1471000 1476000-1477000 1479000-147A000 147F000-1480000

085-088 1482000-1483000 1488000-1489000 148B000-148C000 1491000-1492000

089-092 14A3000-14A4000 14B4000-14B5000 14B6000-14B7000 14B9000-14BA000

093-096 14BB000-14BC000 14CC000-14CD000 14CE000-14CF000 14DF000-14E0000

097-100 14E1000-14E2000 14F2000-14F3000 14F5000-14F6000 1506000-1507000

101-104 1509000-150A000 150C000-150D000 156C000-156D000 156F000-1570000

105-108 1571000-1572000 1574000-1575000 1576000-1577000 1579000-157A000

109-112 157B000-157C000 157E000-157F000 1580000-1581000 1583000-1584000

113-116 1586000-1587000 1589000-158A000 158C000-158D000 158F000-1590000

117-120 1592000-1593000 1595000-1596000 1598000-1599000 159B000-159C000

121-124 159E000-159F000 15A1000-15A2000 15A4000-15A5000 15B5000-15B6000

125-128 15B8000-15B9000 15C9000-15CA000 15CB000-15CC000 15DC000-15DD000

129-132 15DE000-15DF000 15EF000-15F0000 15F1000-15F2000 1602000-1603000

133-136 1604000-1605000 1615000-1616000 16B9000-16BA000 16CA000-16CB000

137-140 16CC000-16CD000 16CF000-16D0000 16D2000-16D3000 16D7000-16D8000

141-144 16DA000-16DB000 16DD000-16DE000 1703000-1704000 1706000-1707000

145-148 1709000-170A000 170C000-170D000 170F000-1710000 1712000-1713000

149-152 1715000-1716000 1718000-1719000 171B000-171C000 171E000-171F000

153-156 1721000-1722000 1724000-1725000 1727000-1728000 172A000-172B000

157-160 172D000-172E000 1730000-1731000 1733000-1734000 1736000-1737000

161-164 1739000-173A000 173C000-173D000 173F000-1740000 1742000-1743000

165-168 1745000-1746000 1749000-174A000 2941000-2942000 2943000-2944000

169-172 2A15000-2A16000 2A18000-2A19000 2A1D000-2A1E000 2A20000-2A21000

173-176 2A23000-2A24000 2A25000-2A26000 2A28000-2A29000 2A2B000-2A2C000

177-180 2A2F000-2A30000 2A33000-2A34000 2ABF000-2AC0000 2AC2000-2AC3000

181-184 2ACE000-2ACF000 2AD1000-2AD2000 2AFC000-2AFD000 2AFF000-2B00000

185-188 2B11000-2B12000 2B14000-2B15000 2B16000-2B17000 2B19000-2B1A000

189-192 2B4A000-2B4B000 2B50000-2B51000 2B53000-2B54000 2B59000-2B5A000

193-196 2B5C000-2B5D000 2B62000-2B63000 2B65000-2B66000 2B6B000-2B6C000

197-200 2B6E000-2B6F000 2B74000-2B75000 2B77000-2B78000 2B7D000-2B7E000

201-204 2B80000-2B81000 2B86000-2B87000 2B89000-2B8A000 2B8F000-2B90000

205-208 2B92000-2B93000 2B98000-2B99000 2B9B000-2B9C000 2BA1000-2BA2000

209-212 2BA5000-2BA6000 2BA8000-2BA9000 2BAB000-2BAC000 2BBC000-2BBD000

213-216 2BBF000-2BC0000 2BD0000-2BD1000 2BD3000-2BD4000 2BF4000-2BF5000

217-220 2BF7000-2BF8000 2BFA000-2BFB000 2BFD000-2BFE000 2C0E000-2C0F000

221-224 2C11000-2C12000 2C14000-2C15000 2C17000-2C18000 2C28000-2C29000

225-228 2C30000-2C31000 2C41000-2C42000 2C44000-2C45000 2C47000-2C48000

229-232 2C4A000-2C4B000 2C4F000-2C50000 2D34000-2D35000 2D37000-2D38000

233-236 2D3A000-2D3B000 2D3D000-2D3E000 2D40000-2D41000 2D43000-2D44000

237-240 2D46000-2D47000 2D49000-2D4A000 2D4C000-2D4D000 2D50000-2D51000

241-244 2D54000-2D55000 2D65000-2D66000 2D67000-2D68000 2D78000-2D79000

245-248 2D7A000-2D7B000 2D8B000-2D8C000 2D8D000-2D8E000 2D9E000-2D9F000

249-252 2DA0000-2DA1000 2DB1000-2DB2000 2F6D000-2F6E000 2F7E000-2F7F000

253-256 2F80000-2F81000 2F91000-2F92000 2F93000-2F94000 2FA4000-2FA5000

257-260 2FA7000-2FA8000 2FB8000-2FB9000 2FBB000-2FBC000 2FCC000-2FCD000

261-264 2FD0000-2FD1000 2FE1000-2FE2000 39DC000-39DD000 39FD000-39FE000

265-268 39FF000-3A00000 3A10000-3A11000 3A13000-3A14000 3A24000-3A25000

269-272 3A26000-3A27000 3A29000-3A2A000 3A2B000-3A2C000 3A30000-3A31000

273-276 3A32000-3A33000 3A37000-3A38000 3AB9000-3ABA000 3ABE000-3ABF000

277-280 3CC5000-3CC6000 3CD6000-3CD7000 3CD9000-3CDA000 3CEA000-3CEB000

281-284 3CED000-3CEE000 3CFE000-3CFF000 3D02000-3D03000 3D13000-3D14000

285-287 3D15000-3D16000 3D26000-3D27000

Table A1: Addresses of the halted 286 regions in M241

Table A1 presents detailed memory address information

for 286 regions in the M241 PLC that either deny access (pre-

venting any data read) or cause the PLC to halt as Figure A1.

All memory addresses are organized in 4KB (0x1000-byte)

increments, suggesting that the fundamental memory man-

agement block size in the M241 is 4KB. As shown in Table 3

of Section 7, only two such occurrences were observed be-
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Figure A1: PLC State Changes

low 0xC94000, while an additional 284 occurrences were

identified beyond 0xC94000.

Figure A2: M241 Board and Chipset with ARM Architecture

Figure A2 shows the M241 PLC board after we disassem-

bled the device for closer inspection. Once the heatsink was

removed, we could confirm that, unlike the M221 PLC which

employs a Renesas chipset, the M241 uses an ARM-based

chipset. Given that the M221, the most famous PLC of the

Modicon series, relies on Renesas, finding ARM-structured

data during the M241’s memory acquisition and classification

was unexpected and needed to be verified.

Figure A3: M241 ARM Binary Example

Table 3 highlights memory regions in the M241 PLC,

specifically 0x000000–0x660000 and 0x660000–0x9B3000,

which were predicted to contain executable code. To further

validate these predictions, we performed a binwalk as men-

tioned in Section 7 analysis on these regions, revealing recog-

nizable ARM instruction sequences as Figure A3. While not

all data within these regions was classified as executable code,

the frequency of detected instruction patterns was sufficient to

delineate code segments and estimate their boundaries. This

analysis confirms that our machine learning-based classifica-

tion effectively distinguishes executable content from non-

executable data within PLC memory, providing a foundation

for targeted exploitation and further security analysis.
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