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 A B S T R A C T

The increased adoption of 3D printing across various critical manufacturing sectors has made it a fruitful 
target for adversaries, particularly through the manipulation of G-code instructions that control the operations 
of 3D printers. Simple modifications to these instructions could significantly impact the integrity of 3D-printed 
objects. While side-channel analysis during printing is a common detection method, identifying potential 
malicious G-code before printing can save time and resources. Existing work relies on primitive encryption 
and hashing techniques and cannot distinguish between benign and malicious G-code instructions. It assumes 
that G-code files are benign and uses them as a reference model, focusing only on the integrity checking 
of G-code during storage and transmission. This paper introduces a novel automated approach to efficiently 
differentiate between benign and subtly manipulated G-code caused by filament, thermodynamic, and Z-profile 
attacks without requiring a reference model. As the first study leveraging recent advancements in Machine 
Learning (ML), we address several challenges in dataset generation, feature engineering, G-code segmenting 
and labeling, and ML classifier selection. We generate diverse G-code datasets to identify the optimal dataset 
characteristics and conduct a comprehensive formal analysis to extract the most suitable features. Efficient 
labeling strategies are employed at both layer and command levels, using the Multiple Instance Learning (MIL) 
paradigm for the former. We adopt the Bidirectional Long Short-Term Memory (Bi-LSTM) model enhanced by 
an attention mechanism and focal loss function for layer classification. Meanwhile, the Random Forest (RF) 
algorithm and Multilayer Perceptron (MLP) neural network model are used for command classification. All 
classifiers are designed to handle the imbalanced dataset. Experimental evaluation demonstrates the efficacy 
of our approach. The Bi-LSTM model achieves F1 scores up to 91.3% in detecting filament attacks, while the 
RF algorithm performs better in detecting nuanced thermodynamic and Z-profile changes at the command 
level, achieving F1 scores between 81.6% and 99.3%.
1. Introduction

3D printing, also known as additive manufacturing (AM), has been 
adopted across various critical sectors, such as energy supply, health-
care facilities [1], and firearms production [2,3], due to its ability 
to build precise and complex shapes [4,5]. However, this increased 
integration in sensitive manufacturing has made it an attractive target 
for malicious actors. Adversaries have exploited vulnerabilities at mul-
tiple stages of the 3D printing workflow, including modifying design 
files such as Computer-Aided Design (CAD) and STereoLithography 
(STL) files [6–8]. They have also manipulated G-code files, which 
contain structured instructions controlling 3D printer operations [9], 
and compromised the printer’s firmware and bootloader [10,11].

While traditional hash and digital signature methods have been 
used to improve design file integrity, the 3D printing process remains 
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vulnerable at multiple stages. The slicing software that converts STL 
files into layered G-code sequences may be susceptible to attacks [12], 
potentially generating malicious instructions. Additionally, G-code files 
can be compromised during sharing or utilization, further expand-
ing the attack surface. Malicious modifications to these files involve 
creating cavities within the 3D object [8], disrupting filament extru-
sion [13,14], modifying infill structures [15,16], changing fan and 
printing speeds [10,17], adjusting nozzle and bed temperatures [18], 
and compromising the layer bonding and thickness [19,20]. These 
manipulations can significantly compromise the quality of 3D printed 
objects without visible deformations [21], potentially leading to severe 
real-world consequences. For instance, creating hidden cavities within a 
3D-printed gun could cause dangerous malfunctions. Similarly, changes 
in the material density of a 3D-printed heart implant could have fatal 
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nd similar technologies. 
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Fig. 1. Temperature and fan speed patterns in G-code generated by different versions 
of slicing software (Ultimaker Cura) for an identical design.

consequences for a patient. Belikovetsky et al. [14] demonstrated a 
practical example of real-world G-code attacks by creating cavities 
near the center of a drone’s propeller, causing it to fail shortly after 
takeoff. Furthermore, Rais et al. [22] showed how subtle changes in 
filament extrusion and nozzle temperature could significantly impact 
the physical properties of printed objects.

To this end, several detection approaches focus on analyzing side 
channels during the printing process, such as surface roughness [23], 
nozzle temperature [24,25], acoustic emissions [25], infrared imag-
ing [26], and inertia sensors [16]. However, we can save time and 
eliminate material waste by detecting G-code attacks before printing 
begins. In this direction, the existing work [27–29] is limited and 
relies on primitive encryption and hashing techniques that cannot 
analyze G-code files to distinguish between benign and malicious G-
code instructions. These approaches assume that G-code files are benign 
and use them as a reference model, focusing only on integrity checking 
of G-code during storage and transmission. Moreover, they lack the 
ability to identify the specific nature, location, and potential impact 
of modifications, which is crucial for assessing risk and implementing 
effective mitigations in complex manufacturing environments. As a 
result, G-code files must be analyzed to ensure they do not contain 
potential malicious patterns.

Indeed, detecting malicious manipulations within extensive G-code 
files is challenging due to the subtle and complicated nature of G-
code attacks, making manual analysis impractical and error-prone. For 
instance, filament attacks span multiple commands to achieve their 
sabotage goal. They target the filament length along the movement 
command in various ways, resulting in overlapping footprints within 
G-code data [22]. Furthermore, the magnitude of these attacks, such 
as the size of cavities and the extent of density change, varies not 
only across files but also between layers within the same file. Notably, 
such modifications can also be intentional design choices rather than 
attacks, as benign designs might necessitate different material densities 
in specific parts. Thermodynamic attacks pose another challenge by 
affecting entire layers within the G-code file through subtle adjust-
ments to temperature and fan speed instructions. However, rule-based 
methods prove inadequate to detect such changes for several reasons. 
Firstly, slicing software variability generates unique temperature and 
fan speed patterns across the G-code file, even for identical designs and 
slicing parameters, as illustrated in Fig.  1. Secondly, user customization 
of slicing parameters can be misclassified as attacks by static rules. 
Thirdly, the validity of a configuration often depends on its position 
within the G-code file; as the length of layers varies with design size and 
shape, the locations of instructions shift accordingly. Lastly, validating 
millions of G-code lines against extensive rule sets is computationally 
expensive. Given these challenges, recent advancements in machine 
learning are promising and warrant a comprehensive study to explore 
the detection of complex and subtle manipulations in G-code files.
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This study introduces a novel detection approach that accurately 
distinguishes between benign and subtle malicious manipulations in G-
code files. It provides insights into the nature of these modifications 
without requiring a reference model, such as the original G-code file or 
its hash values. Moreover, this approach efficiently recognizes intricate 
malicious overlapping patterns within G-code commands. It can detect 
various attacks, including filament attacks, such as cavity and filament 
density variation; thermodynamic attacks involving nozzle (extruder) 
temperature, bed (build plate) temperature, and fan speed; and Z-
profile attacks that adjust printing bed leveling. It is important to note 
that the impact of these attacks varies based on their magnitude, type, 
and target location within the object. Moreover, the same attack can 
have dramatically different consequences for objects of various sizes. 
While real-world evaluation is essential to confirm malicious intent, 
our focus on early detection leads us to flag these manipulations as 
potentially malicious. This strategy helps identify and mitigate possible 
attacks at the earliest stage. So, when manipulations are detected in a 
G-code file, our approach discards this file and prevents it from being 
sent to the 3D printer for execution, thereby enhancing the overall 
security of the 3D printing process.

As the first approach leveraging machine learning for detecting G-
code attacks, several research challenges arise. A significant challenge 
lies in the lack of publicly available G-code datasets, particularly those 
containing documented attack scenarios. Consequently, generating a 
diverse and representative dataset becomes crucial, considering fac-
tors such as size, diversity, compactness, completeness, and realism. 
Moreover, identifying and extracting informative features to represent 
G-code commands efficiently is another challenge. This task requires 
capturing subtle changes, which demands domain-specific knowledge 
and an understanding of the context. Additionally, it is essential to de-
termine the optimal way to segment and label the G-code files and find 
the optimal ML model to classify them. This process must consider the 
extensive length of G-code files, the sequential dependencies between 
commands, and the various attack patterns.

Therefore, we begin our study by discussing multiple factors while 
generating the G-code datasets, such as the diversity of 3D designs and 
slicing parameters and their impact on the effectiveness of detecting G-
code attacks. These parameters, utilized by slicing software to convert 
3D designs into G-code files, include printing speed, layer thickness, in-
fill patterns, density, and direction. We then conduct a formal analysis 
of benign and malicious G-code samples to identify the most informa-
tive features to represent G-code instructions. These features encompass 
the command type and number, movement distance and direction angle 
of the print head, filament amount, thermodynamic settings including 
the nozzle and bed temperatures and fan speed, Z-parameter values 
that determine bed leveling, and layer characteristics such as thickness, 
number, and indicator. To identify the optimal feature set, we employ 
a wrapper-based model evaluation method [30]. This approach tests 
various combinations of features by assessing the machine learning 
model’s performance on a test dataset. Through this process, we sys-
tematically investigate the impact of different features on detection 
accuracy, aiming to optimize our model’s ability to identify G-code 
attacks.

Building on this foundation, we introduce two classification strate-
gies, one focusing on entire layers and another on individual com-
mands, considering the attack’s behavior. The complex patterns of fil-
ament attacks necessitate a flexible approach to capture the full attack 
trace, leading us to adopt the Multiple Instance Learning (MIL) repre-
sentation paradigm [31,32]. MIL provides a comprehensive approach 
widely employed in various fields, including image classification, text 
categorization, and web mining [33]. In the context of G-code, we 
consider each layer as a bag, and each command is an instance of 
that bag. If a sequence of commands within a layer is malicious, the 
entire layer is labeled as malicious. Conversely, thermodynamic and 
Z-profile attacks typically affect single commands, making command-
level classification more suitable. This approach is particularly effective 
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for detecting malicious layers influenced by setting changes outside of 
their commands.

Our layer classification approach employs Bi-LSTM [34], a Recur-
rent Neural Network (RNN) variant well-suited for handling sequential 
data like G-code. Bi-LSTM’s capacity to process sequences while con-
sidering both past and future context enhances its understanding of 
interdependencies among G-code commands. By incorporating an at-
tention mechanism, we further improve the model’s ability to identify 
malicious patterns within variable-length layers, allowing it to focus 
on the most relevant features. Furthermore, to handle the dataset 
imbalance resulting from varying layer counts across files and the 
number of attack-impacted layers, we use the focal loss function with 
this model [35]. On the other hand, and for command classification, 
we adopt the Random Forest (RF) algorithm [36] and Multilayer Per-
ceptron (MLP) neural network model [37], which can effectively han-
dle high-dimensional, non-linear relationships between the extracted 
features.

Therefore, the contributions of this paper are as follows:

• Propose an efficient machine learning-based early detection ap-
proach of malicious manipulations caused by G-code attacks, 
providing insights into the nature of these modifications without 
requiring a reference model.

• Generate and analyze diverse G-code datasets with varying 3D 
designs and slicing parameters to determine the optimal dataset 
characteristics for enhanced G-code attack detection.

• Conduct a formal analysis to identify the most informative fea-
tures for G-code attack detection and determine the optimal 
feature set.

• Introduce efficient strategies to segment, label, and classify G-
code instructions, considering the extensive length of G-code files 
and the nature of attacks.

Our experiments emphasize the critical role of diversifying dataset 
characteristics, including design, slicing parameters, and feature sets, 
for accurately detecting subtle malicious manipulations. Moreover, the 
Bi-LSTM model effectively detects filament attacks, achieving F1 scores 
up to 91.3%. Meanwhile, the RF algorithm performs better in detecting 
nuanced thermodynamic and Z-profile changes at the command level, 
achieving F1 scores between 81.6% and 99.3%. Additionally, the focal 
loss function significantly mitigates the impact of dataset imbalance, 
enhancing the detection approach’s overall robustness. To support fur-
ther research, our codes and datasets are available at: https://github.
com/HalaAli198/ML-based-G-code-Attacks-Detection.

The rest of the paper is organized as follows. Section 2 covers 
the background and attack model. Section 3 reviews related work. 
Sections 4 and 5 address the research challenges and proposed method-
ology. Section 6 presents the experimental evaluation. Section 7 illus-
trates the efficacy of our methodology in real-world scenarios, while 
Section 8 analyzes its scalability. Finally, Section 9 discusses the limi-
tations and Section 10 concludes the paper.

2. Background and attack model

2.1. 3D printing workflow

The 3D printing process consists of four main stages [38], as illus-
trated in Fig.  2. It starts with creating a digital 3D model using CAD 
software, which is subsequently saved as an STL file [39]. This file 
encapsulates the object’s surface geometry as a mesh of interconnected 
triangles. Next, specialized slicing software converts the STL file into 
layers of precise G-code instructions that control printing parameters, 
including nozzle movements, temperature settings, fan speeds, and 
material extrusion rates. Finally, the printer’s firmware interprets these 
G-code instructions to construct the object layer by layer physically [15,
40].
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Fig. 2. 3D printing workflow.

Fig. 3. Examples of G-code commands.

Fig. 4. G-code attacks categories.

2.2. G-code data

G-code files contain critical instructions that control 3D printer 
operations [41], including print head coordinates, material extrusion 
amount, printing speed, and temperatures for both the nozzle and 
build plate (bed). These temperature settings ensure proper material 
adhesion and flow during the printing process. G-code also controls 
fan speed, affecting the cooling rate of extruded material and conse-
quently impacting print quality. Moreover, the bed leveling is adjusted 
according to the values of the 𝑍-axis parameter of movement G-code 
commands. Proper bed leveling is essential for preventing common 
issues such as warping, curling, and delamination, enhancing overall 
print quality [17].

Fig.  3 illustrates examples of these G-code commands. Specifically, 
Fig.  3(a) demonstrates a movement command that positions the print 
head at coordinates (X = 88.168 mm, Y = 114.127 mm) and sets the 
filament extrusion length to 7.54543 mm. Fig.  3(b) shows examples 
of M-commands used to control temperatures and fan speed during 
printing.

2.3. G-code attacks

This study classifies the G-code attacks based on the number of ma-
nipulated commands into multi-command and single-command attacks, 
as shown in Fig.  4.

Multi-command attacks
This category of attacks involves manipulating multiple parame-

ters across movement commands within the internal structure of the 
targeted object, potentially compromising its strength without visible 
deformations [22,40]. These attacks include:
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Fig. 5. Impacted G-code sample by filament cavity attack.

• Cavity attack (): This attack physically creates cavities within 
the printed object by dividing the targeted movement distance into 
shorter segments and selectively disabling material extrusion at some 
segments. It involves inserting G1 movement commands to create the 
segments and to retract and push the material before and after the 
cavity. The total filament allocated to the generated segments and 
the disabled extrusion amount equals the original filament amount 
of the targeted command. Fig.  5 shows an example of G-code im-
pacted by this attack, visualized using the Zupfe GCode Viewer[42]. 
This figure demonstrates one pattern of the attack, creating three 
consecutive cavities. Each cavity is formed by detracting the filament 
to make a clear cavity and then pushing it back. In the visualization, 
white circles indicate detraction locations, while the purple circles 
represent retraction locations.

• Density variation through Filament Speed Attack(): This attack 
physically alters the filament motor speed to manipulate the amount 
of extruded filament, introducing localized weaknesses within the 
printed object. In the context of G-code, it focuses on modifying 
the ‘‘E’’ parameter of targeted G1 commands to reduce the filament 
amount extruded at these commands while compensating for it else-
where within the same layer, maintaining the overall object weight. 
However, the subtle manipulations caused by this attack, measured 
in millimeters, cannot be visualized in G-code viewers or detected 
by the naked eye due to the minimal scale of the changes.

• Density variation through filament state attack( ): This attack 
physically adjusts the filament motor state (ON/OFF) before reach-
ing the targeted regions. It aims to mute filament extrusion over 
the entire movement distance by removing the ‘‘E’’ parameter of 
the targeted G1 command or setting identical ‘‘E’’ parameters of 
consecutive G1 commands, followed by G92 to push the material 
with the following commands. Fig.  6 shows an impacted G-code 
sample by this attack.

Single-command attacks
This category includes attacks that inject, delete, or modify a single 

G-code command, such as:

• Thermodynamic Attacks: These attacks physically alter the nozzle 
temperature (𝑛), bed temperature (𝑏), and fan speed (𝑠) by manip-
ulating the corresponding G-code commands, such as M104/M109 
for nozzle temperature, M140/M190 for bed temperature, and
M106/M107 for fan speed. These attacks can lead to defects in the 
printed object, including shrinking and warping [43–45].
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Fig. 6. Impacted G-code sample by filament state attack.

• Z-profile Attack (𝑝): This attack targets the printing bed level by 
manipulating the ‘‘Z’’ parameter of G0 and G1 commands [17,46], 
consequently affecting the layer thickness of the printed object. Such 
alterations can compromise the mechanical properties of the printed 
object, including its strength [15] and surface roughness [47].

2.4. Attack model

We assume that the 3D printer operates in a secure environment 
and can accurately create an intended object when receiving a benign 
G-code file. However, G-code files can be compromised beforehand and 
require analysis to ensure they do not contain any potential malicious 
instructions. For instance, users can generate and share G-code files 
for printing, or open-source G-code files can be reused, which may 
contain malicious instructions. Our approach serves as a primary line 
of defense, examining G-code files, identifying the attack’s type, and 
forwarding only valid files to the 3D printer.

The attacker aims to sabotage the quality of the printed object by 
compromising the G-code file before it arrives at the printer, which can 
be achieved throughout the lifecycle of G-code file generation, sharing, 
and utilization. Fig.  7 illustrates how an attacker can compromise a 
G-code file. One method is to target the slicer software and inject mali-
cious instructions during the G-code file generation process. Kurkowski 
et al. [12] demonstrated this attack by installing a kernel driver on the 
machine hosting the slicer software, which locates G-code instructions 
in the slicer process memory and injects malicious code. Additionally, 
Moore et al. [48] discovered vulnerabilities in the Cura slicer software 
that attackers can exploit to access G-code data in memory. Another 
approach for the attacker is to directly access the G-code stored on the 
host machine’s disk. Moreover, when G-code files are transferred over 
the network to the printer, an adversary can intercept and modify the 
files during transmission, injecting malicious G-code instructions.

3. Related work

This section discusses various methods proposed to detect G-code 
attacks during printing by analyzing side-channel data. Additionally, 
it explores pre-printing detection approaches that utilize cryptographic 
techniques such as hashing, digital signatures, and encryption.

3.1. Side-channel based detection

Researchers have leveraged several machine-learning techniques to 
detect malicious G-code manipulations by analyzing side-channel data, 
including sensor readings and images captured by thermal, infrared 
(IR), and optical cameras. Si et al. [23] worked on monitoring the 
fan speed changes during printing and predicting their impact on 
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Fig. 7. Sabotage attack model.

print quality to detect any malicious manipulations. Their approach 
employs K-means clustering to determine optimal printing parameters, 
including layer thickness, infill density, and fan speed, while neural 
networks are used to predict surface roughness. Zhou et al. [49] focused 
on detecting alterations in part design, such as void creation, and 
G-code parameters, such as layer thickness modifications, using side-
channel vibration signals. Their system employs the Echo State Network 
(ESN) to extract features, which are then used with both machine 
learning classifiers, including Logistic Regression (LR), Random Forest 
(RF), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), 
and Multivariate Exponentially Weighted Moving Average (MEWMA) 
control charts to identify abnormalities. Zhang et al. [50] worked on 
predicting the size of internal voids in printed parts, considering the 
impact of five printing parameters, such as layer thickness, sintering 
temperature, ramp ratio, nozzle temperature, and printing speed. Their 
approach adopts Support Vector Regression (SVR) and Neural Networks 
(NN) to predict void percentages based on these parameters. Whereas 
Khanzadeh et al. [51] aimed to detect the geometric deviations and 
directions in the printed part using laser-scanned coordinate data. Their 
method uses a Self-Organizing Map (SOM) to cluster the geometric de-
viations into different types based on magnitude and direction, linking 
them to specific process conditions, particularly infill percentage and 
extruder temperature.

Beyond machine learning techniques, researchers have explored 
other methods to detect G-code attacks. Gao et al. [17] proposed a 
real-time monitoring system that uses multiple sensors, including an 
accelerometer and magnetometer attached to the printer extruder, an 
accelerometer on the print bed, and a camera. The system aims to 
reconstruct and verify four key printing attributes: layer thickness, 
nozzle speed, internal infill design, and fan speed. It employs various 
techniques like Kalman filtering, image processing, and audio analy-
sis to estimate these parameters. This system can identify potential 
firmware-based attacks that manipulate the printing process by com-
paring the reconstructed values to the expected G-code instructions. 
Kurkowski et al. [52] relied on analyzing the data collected from 
three side channels, including the build plate level, the print chamber 
temperature, and the laser firing time. Their approach involves creating 
a baseline from the sensor readings without requiring access to the 
toolpath code to detect anomalies in the powder bed fusion process. 
Haris et al. [21] introduced a framework that uses external sensors 
to monitor the nozzle movement, filament extrusion, and tempera-
tures of the 3D printer. It compares the sensor data against expected 
values derived from the G-code instructions to detect anomalies. The 
framework analyzes the printing process layer-by-layer in both spatial 
and temporal domains. It can detect various attacks, including those 
targeting nozzle kinematics, filament extrusion, and thermodynamics. 
Moore et al. [53] monitored the current supplied to actuators (i.e., mo-
tors of X and Y steppers, nozzle, and build plate) during the printing 
process. Their system compares the resulting power traces to those 
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from known benign prints. Deviations in the traces that exceed a set 
threshold indicate potential attacks. Such attacks include insertions, 
deletions, and reordering of individual G-code movement commands. 
Chhetri et al. [54] proposed a method to detect kinetic cyber-attacks 
during 3D printing by monitoring acoustic emissions. Their approach 
uses machine learning techniques such as Gradient Boosting Regression 
(GBR) and Logistic Regression (LR) to model the relationship between 
control parameters (e.g., nozzle speed, axis movement, distance) and 
observed acoustic emissions. The system continuously compares actual 
emissions to those expected based on G-code instructions, flagging 
deviations beyond set thresholds as potential attacks. This method can 
detect changes in printing parameters like nozzle speed in X and Y 
directions.

Other detection methods have focused on analyzing image, audio, 
and video data acquired during printing. Bhandarkar et al. [55] aimed 
to detect warpage in 3D-printed polymer parts through real-time im-
age capture. They classified these images into warped and unwarped 
categories using convolutional neural networks (CNN). Wu et al. [56] 
addressed infill structure attacks by analyzing manipulations in images 
of printed parts, utilizing different machine learning algorithms such 
as Random Forest (RF) and k-Nearest Neighbors (kNN). Al-Mamuna 
et al. [57] detected changes in the internal structure of printed objects 
by analyzing the captured video of each layer during printing. They 
applied adaptive image segmentation to extract high-contrast texture 
regions relevant to the printing path and characterized the distribution 
of geometric features for each layer. Yang et al. [58] focused on 
detecting malicious changes in the infill density of printed objects by 
analyzing both audio and video signals. Their approach compares the 
Fast Fourier Transform (FFT) of a benign reference audio signal with 
the test signal using the Wasserstein distance. They also reconstructed 
the extruder’s movement path from video recordings and compared 
it to the expected G-code using the Hausdorff distance. Belikovetsky 
et al. [16] explored audio signals from side-channel emanations to 
verify the integrity of printed objects. Their approach adapts audio 
fingerprinting techniques, similar to music recognition apps, to classify 
3D printer sounds. By recording and segmenting the audio of a known 
normal print as a reference, their system can detect deviations in 
subsequent prints that may indicate tampering.

Furthermore, recent studies have focused on improving print quality 
by detecting anomalies in G-code using various vision-based monitoring 
techniques. Goh et al. [59] developed an on-site monitoring system 
using a camera attached to the print head that feeds video to object de-
tection models for identifying defects. The researchers trained various 
YOLO models to detect and classify printing anomalies, such as under-
extrusion and over-extrusion, achieving mean average precision scores 
of over 80%. They also employed ONNX optimization to improve infer-
ence speed to approximately 70 FPS. Moreover, their approach enabled 
real-time G-code corrections during printing when defects are detected, 
thus enhancing 3D print quality. Petsiuk and Pearce [60] introduced a 
method that compares images of printed layers with reference images 
generated from G-code using Blender software [61]. They applied 
Histograms of Oriented Gradients (HOG) with twelve similarity metrics, 
such as Pearson’s r, Spearman’s rho, cosine, and Dice. However, this 
approach requires no preliminary training data and can detect errors 
early enough to pause printing or implement future automated cor-
rections. Unlike vision-based approaches, Kumar et al. [62] developed 
a vibration-based method for detecting mechanical anomalies using 
low-cost sensors mounted directly on the printer. Their LSTM imple-
mentation achieved 97.17% accuracy when comparing four machine 
learning algorithms. This approach automatically terminates printing 
upon detecting anomalies, targeting mechanical issues like component 
failure and belt slippage that vision-based systems typically miss.
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3.2. Pre-printing detection

These approaches aim to maintain the integrity of G-code files and 
secure them during transmission and storage before printing starts, 
using cryptographic techniques such as hashing, digital signatures, and 
encryption. Li et al. [27] grouped G-code commands into blocks, each 
randomly mapped to a corresponding mapped block. Authentication 
bits, generated from X and Y coordinates using a hash function, are 
embedded into the least significant bits of these coordinates. Recovery 
bits, consisting of the original X and Y coordinate bits, are embedded 
in the mapped block. The 3D printer verifies the authentication bits 
to detect tampering and restores authentic blocks using the recovery 
bits. Tampered blocks are partially recovered if their mapped block 
is authentic. However, this method can only detect changes in X 
and Y coordinates, requires the original G-code for comparison, and 
cannot detect injected or removed commands. Oligshclaeger et al. [28] 
proposed an end-to-end encryption method for G-code files between the 
user and the printer facilitated by a third-party computing server. This 
server manages user interactions, encryption, decryption, storage of en-
crypted G-code files, and key retrieval for the 3D printer. The approach 
divides the G-code into parts, using unique encryption and decryption 
keys for each part. However, it suffers from high computational com-
plexity due to generating multiple symmetric encryption keys with the 
G-code file and extensive communication between the user, 3D printer, 
and server. Shi et al. [29] introduced a blockchain-based approach 
to secure the G-code file transmission between the designer and the 
manufacturer responsible for printing. The G-code file is segmented into 
layers, each hashed using the SHA256 function and encrypted with the 
manufacturer’s public key using the RSA algorithm. These encrypted 
layers and their hash values are stored on the cloud. Upon receiving 
the encrypted G-code file, the manufacturer decrypts the layers, verifies 
the stored hashes against the original values, and prints the validated G-
code file. While this approach offers some security benefits, it may flag 
legitimate modifications as false alarms without insights into changes, 
fail to address modifications before hashing or after verification, and 
cause high computational complexity due to the asymmetric encryption 
and decryption of each G-code layer.

We compare our work with these proposed approaches as they 
represent the current state-of-the-art in pre-printing G-code protection. 
While these methods offer valuable contributions, they have limita-
tions that our approach aims to address. Table  1 presents the critical 
distinctions between our approach and these proposed methods, in-
cluding primary focus, employed techniques, manipulation detection 
capabilities, reference model dependency, and operational efficiency. 
We leverage machine learning techniques to detect potential mali-
cious manipulations in G-code and provide insights into their nature. 
Moreover, our method does not require a reference model, third-party 
involvement, or integration with the 3D printer’s firmware. By utilizing 
pre-trained machine learning models for inference, we can improve 
the operational efficiency compared to the computationally intensive 
operations of other methods. However, we conduct both layer-level 
and command-level analyses, offering a more detailed examination 
of the G-code. Additionally, the use of machine learning enables our 
approach to efficiently handle large datasets and adapt to new types 
of manipulations by frequently updating the datasets and retraining 
the models. Furthermore, Fig.  8 demonstrates the limitations of hash 
functions in distinguishing between benign and potentially malicious 
manipulations, as they do not provide insight into the nature or intent 
of the changes. For example, replacing the M106 S0 command with the 
M107 command in a benign G-code file results in different SHA1 hash 
values despite both commands being functionally equivalent in turning 
off the fan. This highlights the necessity of our machine learning 
approach, which can analyze the context and nature of changes more 
effectively than traditional hash-based methods.
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Fig. 8. Comparison of SHA1 hash values of functionally equivalent G-code commands.

4. Challenges addressed

This section discusses the challenges we faced while developing our 
ML-based detection approach. 

C1: Complex nature of G-code attack patterns. The primary challenge 
in this research lies in identifying intricate malicious manipulations 
within extensive G-code files. Filament attacks, in particular, exhibit 
overlapping patterns and varied impacts depending on the targeted 
object’s characteristics. For instance, the filament cavity attack can 
appear in ways that mimic other filament attack types. It may remove 
the filament length parameter ‘‘E’’ across consecutive commands, re-
sembling the filament state attack, or reduce the value of this parameter 
similarly to the filament speed attack, but with the intent of creating 
cavities. Moreover, the magnitude of these attacks can vary across 
layers and files, with differences in the number of targeted commands, 
cavity sizes, the ratio of change in filament density, and the ratio of 
muted filament. Such variations result in various malicious patterns 
that necessitate context-aware detection methods.

While thermodynamic and Z-profile attacks leave more visible foot-
prints, they present their own challenges. Changes in temperatures, fan 
speed, and bed leveling settings might be intentional design choices 
rather than malicious alterations. For example, different object parts 
may require specific temperatures or bed levels. However, the impact 
of these changes depends on their location within the G-code file; mod-
ifications during non-critical operations (e.g., homing the print head) 
may not affect object integrity. Additionally, these configurations often 
follow specific patterns based on slicing software, material, and object 
geometry, making it difficult to distinguish between intentional and 
malicious alterations. The lack of a reference model further complicates 
the detection process, as there is no baseline for comparison. These 
challenges raise our primary research question (RQ1):

    

RQ1: How can we efficiently distinguish between benign and 
potentially malicious manipulations while providing insights into 
their subtle nature without requiring a reference model or real-
time monitoring of the printing process?

2: Lack of G-code database availability. One of the main challenges 
n this research is the lack of publicly accessible G-code datasets, 
articularly those representing various attack scenarios. G-code is often 
reated as proprietary, resulting in limited availability of documented 
ttacks and corresponding files. Organizations are reluctant to share 
-code samples due to intellectual property concerns, leading to a lack 
f diverse and representative datasets for training and testing machine 
earning models. This challenge leads to the second research question 
RQ2) in this study:

   

RQ2: How can we generate an efficient dataset for G-code analy-
sis, considering factors such as size, completeness, compactness, 
and realism?
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Table 1
Comparison of G-code security approaches.
 Aspect Li et al. [27] Oligshclaeger et al. [28] Shi et al. [29] Our approach  
 Primary Focus Integrity protection Transmission security Integrity protection Malicious manipulation detection 
 Main Technique Block mapping and embedding End-to-end encryption Blockchain Machine learning  
 Identify Manipulation Nature No No No Yes  
 Analysis Level Block Block Layer Layer and Command  
 Reference Model Required Yes No Yes No  
 G-code Modification Required Yes No No No  
 Encryption Used No Yes Yes No  
 Third-party Dependency No Yes Yes No  
 Printer’s Firmware Involvement Yes (for verification) Yes (for decryption) No No  
 Operational Efficiency Low (per-print verification) Low (multiple encryptions per file) Low (blockchain operations) High (fast ML inference)  
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Fig. 9. Window slicing of a cavity attack footprint.

C3: Identifying informative feature set for G-code attack detection. Ma-
chine learning models may struggle with extracting features that dis-
tinguish subtle patterns, such as those caused by G-code attacks. This 
difficulty arises due to their lack of deep contextual understanding. 
However, traditional algorithms relying on predefined features may 
miss nuanced details hidden within raw data, especially those requiring 
domain-centric knowledge. While human experts with in-depth 3D 
printer understanding might identify essential features targeted by ma-
licious attacks, the effectiveness of a machine learning model depends 
on the quality of its training data, potentially overlooking complex 
contextual nuances and thus struggling with identifying the context-
specific features accurately. This challenge raises the third research 
question (RQ3):

    

RQ3: How can we identify and extract the optimal feature set 
to efficiently detect the subtle malicious modifications caused by 
G-code attacks?

C4: Feeding sequential G-code data to machine learning models. G-code 
can contain hundreds of thousands of instructions, making it impracti-
cal to feed the entire sequence of instructions to an ML model. Filament 
attacks often span multiple commands, and objects of varying sizes 
result in G-code sequences of different lengths, complicating the deter-
mination of an appropriate chunk size that captures the entire attack 
trace. For example, Fig.  9 demonstrates the limitations of employing a 
sliding window approach to divide a G-code sample impacted by the 
cavity attack into smaller chunks. As shown in Fig.  9(a), using a fixed 
window size (e.g., WS=4) without overlap causes the attack footprint 
to be split across multiple windows, potentially missing crucial parts of 
the attack sequence. Conversely, Fig.  9(b) illustrates that while using 
overlapping windows may capture more information, this can result in 
intermingled portions of different consecutive attack footprints, leading 
to improper capture of the attack patterns.

Moreover, entire layers might be impacted by malicious changes 
outside of their intended commands. In such scenarios, adjustments 
G
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to settings like temperatures, fan speed, or bed leveling can be intro-
duced early in the G-code file or between the layers. Therefore, the 
diverse nature of attack categories necessitates appropriate segmenting 
and labeling strategies for effective classification, raising the following 
research question (RQ4):

    

RQ4: How can we efficiently segment, label, and feed the se-
quence of G-code commands to an ML model, considering the 
varying nature of G-code attacks?

5: Selecting the optimal machine learning model. Manual detection of 
alicious manipulations within G-code files is cumbersome and error-
rone due to the extensive length of these files and the subtle nature 
f changes. As mentioned earlier, the footprints of filament attacks can 
verlap and vary across files with different designs, shapes, and infill 
tructures. Additionally, settings such as temperatures, fan speed, and 
ed leveling follow diverse patterns across layers and files. The validity 
f instructions controlling these settings often depends on their position 
ithin the G-code file, and as layer lengths vary with design geometry, 
he locations of these instructions shift accordingly. These complexities 
ake rule-based detection methods impractical for identifying poten-
ial malicious manipulations within G-code. Furthermore, validating 
ach command or sequence of commands against predefined rules is 
omputationally expensive, given the extensive length of G-code files.
Machine learning presents a robust solution to these challenges. 

nlike manual or rule-based detection methods, which are often time-
onsuming and prone to errors, machine learning algorithms can auto-
atically identify subtle and complex manipulations by analyzing vast 
mounts of data. Thus, by leveraging machine learning techniques, we 
an significantly enhance detection accuracy, minimize false positives, 
nd improve operational efficiency. However, the effectiveness of this 
pproach relies on selecting and optimizing the most suitable ML 
lassifier for the task. This classifier must be capable of capturing the 
equential interdependence between G-code commands, understanding 
eature relationships, and recognizing complicated attack footprints. 
his consideration leads us to the last research question (RQ5):

   

RQ5: How can we identify the suitable ML model for efficiently 
recognizing malicious manipulations, given the sequential nature 
of G-code data and complex attack footprints?

. Research methodology

This section provides detailed answers to the aforementioned re-
earch questions, outlining our methodology for detecting malicious 
-code manipulations. Our process begins with the generation of G-
ode files, followed by a preprocessing phase. During preprocessing, we 
emove comments and file headers and filter the commands to focus 
n movement, filament retraction, and control instructions. We then 
epresent each G-code file as a sequence of 𝐾 layers, where each layer 
omprises 𝑛 commands. Each command is characterized by a vector 
f 𝑚 features identified through a comprehensive formal analysis. The 

-code files are subsequently segmented into layers and commands, 
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Fig. 10. Proposed framework.
which are labeled and stored in datasets. These prepared datasets are 
then split into training and testing sets for machine learning model 
development and evaluation. These steps are illustrated in Fig.  10 and 
further discussed in this section.

5.1. G-code dataset generation

To create a G-code dataset, there are three critical characteristics 
that should be considered depending on the research objectives, which 
are:

• The objects included in the dataset and their geometry complex-
ity.

• The slicing configurations used to slice the objects to generate the 
G-code.

• The features extracted by analyzing the G-code.
There are two studies so far in the literature that created G-code 

datasets. Lasluisa et al. [63] focused on G-code parameter optimization 
using K-means clustering. Their dataset included only one object (the 
3DBenchy model), with a specific focus on control commands such as 
M104, M109, M140, and M190 for temperature control, G1 for speed 
control, and M221 for flow control. For slicing configurations, they 
considered a specific set of parameters such as the layer thickness, 
print speed, perimeter speed, extruder temperature, bed temperature, 
and flow rate, with a fixed infill density of 10% and infill speed of 
80 mm/s. The 3DBenchy model is then sliced with multiple parameter 
combinations to generate the training dataset. Wu et al. [9] adopted 
the LSTM model to predict mechanical properties (specifically Axial 
and Shear forces) directly from G-code. Their dataset was considerably 
focused, examining only a 40 mm ×  40 mm ×  1 mm plate structure 
using a PolyJet 3D printer, with specific slicing parameters including 
infill pattern (with seven variations), infill density, infill direction, 
and filament diameter. Their complete dataset comprised 13,048 en-
tries, each representing a G-code file with these four features and 
corresponding mechanical test values. In contrast, our dataset offers 
substantially broader coverage and deeper analysis of G-code char-
acteristics, designed for G-code manipulations detection. We consider 
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Table 2
Print profiles of Ultimaker3 3D printer.
 Print Layer Init. Nozzle Init. Print  
 profile thick. nozzle temp. Temp. print speed speed  
 (mm) (◦C) (◦C) (mm/s) (mm/s) 
 Extra Fine 0.06 195 200 60 6  
 Fine 0.1 200 205 70 10  
 Normal 0.15 200 205 80 22.5  
 Fast 0.2 205 210 70 30  

multiple levels of complexity in design geometry, a diverse set of slicing 
parameters while slicing the design, and multiple features to represent 
the generated G-code.

We focus on generating and analyzing G-code datasets for Fused 
Deposition Modeling (FDM) 3D printers, using the Ultimaker 3 printer 
as the primary case study. While we implement and evaluate the de-
tection efficiency of our proposed approach using this specific printer, 
it still can be adaptable to various G-code datasets and generalizable to 
other 3D printers. Despite slight variations in G-code formats, the fun-
damental structure and commands remain primarily consistent across 
printers [64,65]. The feature engineering process, segmenting, labeling, 
and classification methods can be easily adapted to accommodate the 
specific characteristics of different printers. It is important to note that 
3D printers have default configurations based on the materials they 
use. For instance, the Ultimaker 3 printer has four default profiles 
that specify various printing parameters, including the initial nozzle 
temperature for the first and subsequent layers, layer thickness, and 
initial print speed for the first and following layers, as shown in Table 
2.

Dataset design objects
Regarding the choice of designs included in the training, we con-

sider a range from simple geometrical structures to highly complicated 
shapes, as shown in Fig.  11. For instance, some designs exhibit medium 
complexity, characterized by sharp angles, intricate curves, or irregular 
outlines, as shown in Figs.  11(e), 11(f), and 11(g). The most complex 
designs feature highly complex and detailed shapes with irregular 
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Fig. 11. Example designs used to generate the training dataset.

Fig. 12. Example designs used to generate the testing dataset.

patterns or textures, illustrated by Figs.  11(h), 11(i), and 11(j). In 
contrast, our test dataset includes 180 unique designs for evaluating the 
ML models. A small subset of these designs is shown in Fig.  12 using 
the ViewSTL Online Tool [66]. This collection includes critical objects 
such as 3D-printed guns (Fig.  12(f)), drone propellers (Fig.  12(j)), fans, 
and various manufacturing components. By incorporating such diverse 
designs, we cover a broad spectrum of additive manufacturing appli-
cations, from consumer products to potentially sensitive or regulated 
items.
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Fig. 13. Hierarchy of slicing parameters.

Table 3
Slicing parameters, corresponding G-code commands, and their Impact on the printed 
object.
 Parameter G-code Impact Ref.

 Infill Pattern (X, Y) of G0, 
G1, E of G1

Strength, print time, 
material usage

[69,70]

 Infill Density E of G1 Strength, material usage [46,71]
 Infill Direction (X, Y) of G0, 

G1, E of G1
Strength, print time, 
stiffness

[72–74]

 Infill Retraction E of G92 Stringing, surface quality [19,75]
 Nozzle Temp. S of M104 , 

M109
Layer adhesion, warping, 
material flow

[18,43]

 Bed Temp. S of M140 , 
M190

Layer adhesion, warping, 
material properties

[18,76]

 Fan Speed S of M106 , 
M107

Layer adhesion, warping, 
material properties

[17,44]

 Layer Thick. Z of G0, G1 Surface finish, resolution [46,71]

Slicing process
To generate G-code files, we first download trusted STL files (de-

signs) from reputable sources such as Thingiverse [67] and slice them 
using Ultimaker Cura 4.1.0 software [68]. This software uses various 
parameters while generating G-code, including print profile, infill char-
acteristics, temperature settings, and fan speed. The slicing process of 
each design begins by selecting a print profile that controls various 
settings, as shown in Table  2. With each profile, there are various infill 
patterns to be used, such as Grid, Lines, Triangles, Tri-Hexagon, and 
others. These patterns have an infill density ranging from 0% to 100% 
and an infill direction from 0◦ to 360◦. For FDM-based printers that 
use PLA material, the nozzle temperature is usually set between 195◦
and 210◦. Additionally, the bed temperature is typically maintained at 
60◦ to promote proper adhesion and minimize warping of the printed 
object. Fig.  13 presents this hierarchy of parameters that guides our 
feature extraction and analysis processes.

Define malicious G-code
G-code files are generated using various combinations of the above-

mentioned slicing parameters. These files exhibit consistent patterns 
in temperatures, fan speed, and layer thickness settings. For example, 
the fan speed typically starts at 0◦ for the first layer, increases to 85◦
and 170◦ for the second and third layers, respectively, and remains at 
255◦ for subsequent layers, while the bed temperature usually remains 
constant at 60◦ across all layers. Such benign patterns can vary sig-
nificantly depending on the used slicing software, printer model and 
profiles, material type, and user customization. However, given the lack 
of a reference model and prior knowledge of the G-code file under test, 
we consider any deviation from default configuration patterns within 
the file as potentially malicious. Table  3 illustrates the relationship 
between slicing parameters, their corresponding G-code commands, 
and the impact of manipulating these commands on the printed object, 
supported by relevant literature.
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While simple configuration changes can indicate malicious intent, 
filament attacks present a more complex challenge. These attacks ex-
ploit the intricate relationships between various G-code commands 
to compromise the integrity of the printed object. The cavity attack, 
for example, leverages specific command sequences to create voids 
within the printed object. When these sequences are used in an un-
expected manner, they can indicate potential voids, a malicious aspect 
demonstrated by Haris et al. [22]. However, by modifying parameters 
such as the filament length ‘‘E’’ in movement or filament update 
commands, this attack produces distinctive patterns, as detailed in 
Section 2.3. On the other hand, the filament speed attack targets 
the relationship between movement commands and material extrusion 
within the infill section. Normally, the infill has a repetitive structure 
where the amount of extruded filament remains consistent for equal 
movement distances. Therefore, any changes to the filament density 
that compromise this consistency are considered potentially malicious. 
Another type of manipulation, the filament state attack, is characterized 
by setting consecutive extrusion ‘‘E’’ parameters to the same value 
or removing this parameter from certain movement commands. These 
patterns serve as indicators of potential filament state attacks, which 
can disrupt the consistent extrusion of material during printing.

Generated G-code datasets
We aim to identify optimal dataset characteristics for training ma-

chine learning models to detect G-code attacks with high accuracy. 
To achieve this, we focus on design diversity and slicing parameter 
variability as key factors in dataset construction. We generated seven 
distinct G-code datasets for training, each comprising 70% of the total 
600 generated files. These datasets include G-code files generated with 
various designs, print profiles, infill patterns, densities, and directions. 
The remaining 30% (180 files) serves as a common test set across 
all experiments, acting as a standardized benchmark that allows us to 
fairly evaluate the impact of different training datasets on the model’s 
performance. By keeping the model architecture constant and varying 
only the training data, we can determine the level of design and slicing 
parameter diversity needed to detect new patterns of G-code attacks in 
unseen real-world objects. Notably, each design in the test set is sliced 
once with a unique combination of slicing parameters, resulting in a 
highly diverse test dataset that sufficiently challenges the ML model 
during evaluation.

Both the training and testing partitions are divided into 80% benign 
() and 20% malicious classes, including cavity (), filament speed 
(), filament state ( ), nozzle temperature (𝑛), bed temperature 
(𝑏), fan speed (𝑠), and Z-profile (𝑝) attacks. This 80/20 split is de-
liberately chosen to reflect a realistic scenario where benign operations 
are more common than malicious ones. By training on this skewed 
distribution, we aim to create a model that can reliably distinguish 
between normal and potentially malicious files, better preparing it for 
real-world deployment where malicious G-code files are relatively rare.

It is essential to mention that each G-code file contains a large 
number of layers, providing sufficient data for training and testing 
ML models. The number of layers (𝐾) varies based on the object 
height (𝑍𝑜𝑏𝑗) and layer thickness (𝐿𝑡ℎ), as calculated by Eq.  (1). This 
variability in layer count, combined with the fact that attacks may 
target different numbers of layers within a file, results in the diverse 
class distribution observed in our training (𝐷𝑆) and testing (Test) 
datasets, as shown in Table  4. 

𝐾 =
⌈𝑍𝑜𝑏𝑗
𝐿𝑡ℎ

⌉

(1)

To create a robust and representative dataset, we manually manipu-
late specific commands in each layer following the strategies discussed 
in Section 2.3. We introduce attacks of varying magnitudes and types, 
including creating cavities of different sizes, modifying filament density 
to various ratios, muting filament with a varying number of commands, 
and adjusting thermodynamic settings to different degrees deviating 
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Table 4
Layer-level class distribution for the training and testing datasets.
 Dataset Class distribution
     𝑛 𝑏 𝑠 𝑝  
 𝐷𝑆1 9139 247 195 198 245 228 240 240 
 𝐷𝑆2 9139 247 195 198 245 228 240 240 
 𝐷𝑆3 9139 478 418 408 449 423 449 447 
 𝐷𝑆4 13858 478 418 408 449 423 449 447 
 𝐷𝑆5 9139 220 227 182 258 400 294 256 
 𝐷𝑆6 13858 220 227 182 258 400 294 256 
 𝐷𝑆6𝑝 13858 220 227 182 258 400 294 256 
 Test 7374 241 241 337 182 255 171 342 

from the default configurations. This approach ensures a diverse dataset 
that captures a wide range of potential attack scenarios. Furthermore, 
to enhance the reliability of our evaluation process, we maintain com-
plete distinctiveness in combinations of design, print profile, infill 
pattern, density, direction, and attack magnitude. We also ensure no 
overlap between training and testing layers across these combinations.

For the test dataset specifically, we incorporate subtle manipula-
tions designed to rigorously evaluate our detection approach. These 
include a minimum number of infill lines impacted by the filament 
attacks, created cavities with small sizes, subtle changes in the filament 
densities, minor thermodynamic adjustments, such as ±12◦ variations 
in nozzle temperature, and ±2%, ±3%, and ±4% changes in the fan 
speed in addition to nuanced adjustments in the layer thickness, such as 
0.05 mm. 0.1 mm, 0.12 mm, etc. These subtle changes are particularly 
challenging to detect as they do not cause visible deformations while 
significantly impacting the mechanical properties of printed objects, as 
discussed later in Section 6.1.

The datasets, 𝐷𝑆1, 𝐷𝑆2, and 𝐷𝑆3, are generated using simple 
geometric designs, such as rectangular bars and standard ASTM D790 
and ASTM D638 Type IV specimens, which are widely used in existing 
research [15,22]. These designs are illustrated in Figs.  11(a), 11(b), 
and 11(c). While benign G-code samples are generated by varying all 
slicing parameters across these datasets, the malicious samples differ 
in their level of slicing diversity. 𝐷𝑆1 employs only the Fast profile ( 
Table  2) and Lines infill pattern, 𝐷𝑆2 includes all infill patterns with the
Fast profile, and 𝐷𝑆3 incorporates all profiles and infill patterns. The 
entire range of infill density and direction is utilized. The objective is to 
investigate whether using standard designs with specific slicing param-
eters, as employed in existing studies, is sufficient for detecting attacks 
on more diverse, unseen designs and to explore how diversifying the 
slicing parameters impacts the efficacy of attack detection.

𝐷𝑆4, 𝐷𝑆5, and 𝐷𝑆6 are generated to study the impact of diver-
sifying benign and malicious designs on detection accuracy. A set of 
ten unique designs, categorized as simple, medium, or complex based 
on their geometrical structure and detail, is shown in Fig.  11. We use 
these designs to generate the benign G-code samples of 𝐷𝑆4 while 
keeping the malicious samples from 𝐷𝑆3. Conversely, we use them to 
generate the malicious G-code samples of 𝐷𝑆5 while maintaining the 
benign samples from 𝐷𝑆3. In 𝐷𝑆6, we use these designs to generate 
both benign and malicious samples. The G-code files are generated 
by varying all of the slicing parameters. However, 𝐷𝑆6𝑝 differs from 
𝐷𝑆6 by considering only 70% of the total infill patterns, density, and 
direction in both benign and malicious samples, aiming to understand 
how the diversity of infill characteristics affects detection performance 
and dataset completeness.

5.2. Feature engineering

This section conducts a formal analysis to identify and extract 
features crucial for detecting nuanced malicious manipulations within 
G-code files.
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Formal analysis
G-code attacks target different commands, so both the command 

type and number are considered essential features. The command type 
(𝐶𝑡) has 0 for G-commands and 1 for M-commands, while the command 
number (𝐶𝑛) has nine distinct values, which are 0 for G0, 1 for G1, 92 
for G92, 104 for M104, 140 for M140, 109 for M109, 190 for M190, 
106 for M106, and 107 for M107. Moreover, the ‘‘S’’ parameter of 
the M-command represents either the nozzle temperature (𝑆𝑛), bed 
temperature (𝑆𝑏), or fan speed (𝑆𝑓 ), all of which represent crucial 
features. Since the Z-profile attack targets the ‘‘Z’’ parameter of G0 
commands, its absolute value (𝑍𝑣) is also incorporated. Given the 
relation between the nozzle temperature and the layer thickness (𝐿𝑡ℎ) ( 
Table  2), we include it as a feature. The layer thickness represents the 
change in Z values (current 𝑍 and previous one 𝑍𝑝) and is calculated 
as 𝐿𝑡ℎ = 𝑍 −𝑍𝑝.

Furthermore, we analyzed benign samples and found that the nozzle 
temperature and fan speed varied across layers. Fan speed typically 
starts at 0◦ with the first layer, increases to 85◦ and 170◦ with the 
second and third layers, respectively, remains at 255◦ with subsequent 
layers, and then reduces to 0◦ at the end of the last layer. While the 
nozzle temperature is set differently with the first layer and remains 
consistent with subsequent layers ( Table  2). Therefore, we add two 
more features called the layer number (𝐿𝑛) and layer indicator (𝐿𝑖𝑛). 
However, 𝐿𝑛 ∈ [0, 𝐾], while 𝐿𝑖𝑛 has 0, 1, 2 with the first three layers, 
3 with intermediate layers, and 4 with the last layer. The number of 
layers (𝐾) varies across the files and is calculated using Eq. (1).

Since filament attacks primarily affect the extruded filament amount,
we add it as an essential feature calculated as 𝛥𝐸 = 𝐸 − 𝐸𝑝, where 
𝐸 is the current filament length, and 𝐸𝑝 is the preceding one. Con-
sidering the behavior of cavity and filament density variation attacks 
(Section 2.3), we include the movement distance (𝑑) and movement 
direction angle (𝛩) as additional features, calculated using Eqs. (2) and 
(3), respectively. 

𝑑 =
√

(𝑋 −𝑋𝑝)2 + (𝑌 − 𝑌𝑝)2 (2)

where (𝑋, 𝑌 ) is the current location and (𝑋𝑝, 𝑌𝑝) is the previous location 
of the print head. 

𝛩◦ = arctan
( 𝑌 − 𝑌𝑝
𝑋 −𝑋𝑝

)

× 180
𝜋

◦
(3)

As a result, each G-code command is represented by a set of features 
(𝐶𝑡, 𝐶𝑛, 𝑑, 𝛩, 𝛥𝐸, 𝑆𝑛, 𝑆𝑏, 𝑆𝑓 , 𝐿𝑡ℎ, 𝑍𝑣, 𝐿𝑛, and 𝐿𝑖𝑛). For G-commands, 
𝑆𝑛, 𝑆𝑏, and 𝑆𝑓  are the most recent M-command values. If a G-command 
lacks a Z parameter, it uses the last updated Z value. Layer thickness is 
calculated and updated for each new Z value. M-commands represent 
different features, with each command having values for 𝐶𝑡, 𝐶𝑛, 𝐿𝑛, 𝐿𝑖𝑛, 
and either 𝑆𝑛, 𝑆𝑏, or 𝑆𝑓 , while other features are zeros.

To demonstrate the importance of 𝑑, 𝛩, and 𝛥𝐸 features and how 
they are manipulated by filament attacks, we analyze random samples 
of filament cavity and filament density attacks. Fig.  14 (left) highlights 
the original command targeted by the cavity attack in red. Fig.  14 
(right) illustrates the additional inserted G1 commands. These com-
mands represent the three sub-segments resulting from dividing the 
movement distance determined by the original two commands. The 
cavity is created by removing the ‘‘E’’ parameter of the second G1 
command, preceded by a filament retraction of 𝑟 = 4 mm and followed 
by a filament push of 𝑝 = 4 mm. However, 𝑢 = 0.025226 mm represents 
the muted filament amount at the cavity location. Notably, the values of 
𝑟, 𝑝, and 𝑢 are calculated as 𝐸 −𝐸𝑝. Moreover, the attack may segment 
the target distance into a different number of segments with varying 
cavity sizes.

Fig.  15 visualizes the attack’s impact on the targeted movement 
distance. The total distance 𝑑 = 8.06102 mm is divided into three equal 
2.687006 mm sub-segments. The initial segment has 𝛥𝐸 = 0.02532 mm, 
the middle segment has muted filament by 𝑢 = 0.025226 mm, while 
the last segment has 𝛥𝐸 = 0.025274 mm. Summing these values equals 
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Fig. 14. Cavity attack footprint in G-code.

Fig. 15. Cavity attack impact on the movement command.

the original filament amount before the attack: 0.02532 + 0.025226 +
0.025274 = 0.07582 mm. This attack also subtly changes the direction 
angle by a minimal increment of 0.001◦ while segmenting the targeted 
command. We examined various samples and determined that this 
attack can adjust it to a maximum limit of 0.03◦.

The filament speed attack exploits recurring patterns in infill struc-
tures. It leverages the relation between 𝑑 and 𝛥𝐸 features to identify 
the most frequent filament amount (𝛥𝐸∗) for a given 𝑑. For instance, 
Fig.  16 illustrates the impact of this attack on a targeted distance 
𝑑 = 8.0610173 with 𝛥𝐸∗ = 0.10774. The left part highlights the 
targeted command in red and the compensating commands in green. 
In contrast, the right part shows the new filament amounts assigned 
to the targeted and compensating commands, calculated using Eq. (4). 
The variations in filament amount are denoted as 𝐺92𝛥𝐸 , and 𝐺92′𝛥𝐸 , 
while the manipulated filament amount is denoted as 𝛥𝐸𝑚. 

𝛥𝐸𝑚 =

{

𝛥𝐸∗ − 𝐺92𝛥𝐸 ; targeted command
𝛥𝐸∗ + |𝐺92′𝛥𝐸 | ; compensating command (4)

The original filament amount for the targeted command is decreased 
by 𝐺92𝛥𝐸 , from 0.10774 to 0.06063, a reduction of 0.04711. Con-
versely, it is increased for the compensating commands by 𝐺92′𝛥𝐸
amounts of 0.002355 and 0.02356. As a result, the new 𝐸 parameter of 
the targeted command is smaller than the original, whereas it is larger 
for the compensating commands. The 𝐸 value of the 𝐺92 command 
matches the actual 𝐸 of the original commands, leading to a positive 
𝐺92𝛥𝐸 for the target and negative 𝐺92′𝛥𝐸 for the compensating com-
mands. However, this attack does not alter the object’s weight; thus, 
modifications across each layer must satisfy Eq. (5). It is important 
to note that the number of targeted and compensating commands 
may vary across layers with different changes in the target filament 
amounts. 

𝐺92𝛥𝐸 =
𝑛′
∑

𝑖=1
|𝐺92′𝛥𝐸𝑖 | (5)

where 𝑛′  is the number of compensating commands.
Although the filament state attack focuses on manipulating only the 

𝛥𝐸 feature by setting consecutive ‘‘E’’ parameters to the same value 
or removing this parameter from certain movement commands, it may 
overlap with the filament speed attack’s footprint. To demonstrate this, 
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Fig. 16. Filament speed attack footprint in G-code.

Fig. 17. Filament state attack footprint in G-code.

we consider Eq. (4). The filament state attack results in 𝐺92𝛥𝐸 = 𝛥𝐸∗, 
leading to: 

𝛥𝐸𝑚 =
{

𝛥𝐸∗ − 𝛥𝐸∗ = 0 ; targeted command (6)

In this scenario, the sequence of commands after modifications 
appear as follows: The ‘‘E’’ value of the G92 command is adjusted to 
make 𝐺92𝛥𝐸 = 𝛥𝐸∗ = 0.10774, effectively setting 𝛥𝐸𝑚 to zero. The ‘‘E’’
value of the targeted command remains as modified by the filament 
density attack. The ‘‘E’’ value of the preceding command is changed to 
match the ‘‘E’’ value of the targeted command, resulting in 𝛥𝐸𝑚 = 0. 
Meanwhile, the compensating commands remain as changed by the 
filament speed attack.

Fig.  17 illustrates these modifications, highlighted in a green box, 
demonstrating how the footprints of these attacks can overlap. Con-
sequently, when considering only the red section, the pattern may be 
classified as a filament state attack. However, when taking into account 
all sections, including the compensating commands, the pattern aligns 
with the characteristics of the filament speed attack. This overlap 
emphasizes the complexity of distinguishing between these attacks and 
highlights the importance of comprehensive analysis in detecting and 
classifying such manipulations.

Feature selection
To identify the optimal set of features to represent G-code, we em-

ploy a wrapper-based model evaluation approach [30], as illustrated in 
Fig.  18. This method leverages the performance of the machine learning 
model itself to guide the feature selection process. In our study, we 
use the Bi-LSTM model’s performance as the induction algorithm. The 
wrapper method systematically evaluates various combinations of fea-
tures by assessing the Bi-LSTM model’s performance on the test dataset. 
This iterative process allows us to explore the impact of different 
feature subsets on detection accuracy. [77].

The feature selection process starts with a core set of features, 
including 𝐶𝑡, 𝐶𝑛, 𝑑, 𝛩, 𝛥𝐸, 𝑆𝑛, 𝑆𝑏, and 𝑆𝑓 , which are essential for 
representing G-code commands and are included by default. For other 
features, such as layer number (𝐿𝑛), layer indicator (𝐿𝑖𝑛), layer thick-
ness (𝐿𝑡ℎ), and Z-value (𝑍𝑣), their necessity is less certain. Therefore, 
we iteratively exclude one of these additional features and evaluate 
the Bi-LSTM’s performance on the test dataset. Our investigation par-
ticularly focuses on how these features relate to the model’s ability 
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Fig. 18. Wrapper-based Feature Selection.

to recognize thermodynamic and Z-profile attacks. For instance, we 
explore whether excluding the layer thickness feature, which is related 
to both nozzle temperature and Z-value, affects the model’s ability to 
detect nozzle temperature and Z-profile attacks. Similarly, we assess 
the impact of excluding layer number and layer indicator features on 
detecting attacks that target parameters varying with layer progression, 
such as nozzle temperature and fan speed attacks. This approach helps 
us identify the optimal feature subset that enhances the model’s ability 
to detect G-code attacks accurately.

For command-level classification, we observe that commands within 
the same layer often share identical values for several features, in-
cluding 𝑆𝑛, 𝑆𝑏, 𝑆𝑓 , 𝐿𝑡ℎ, 𝑍𝑣, 𝐿𝑛, and 𝐿𝑖𝑛. This similarity could lead to 
redundant feature vectors. To address this and ensure dataset diversity, 
we incorporate all extracted features when representing commands. 
The positional information of commands is also crucial in our analysis. 
Temperature adjustments, fan speed changes, and bed leveling typically 
occur at specific points, such as the beginning or end of a layer. 
However, the location of these control commands varies depending 
on the layer length within the G-code file. To capture this important 
spatial context, we introduce two additional features: Command index 
(𝐶𝑖𝑑𝑥) representing the command’s location within the layer, and com-
mand indicator (𝐶𝑖𝑛), specifying whether the command is the first, an 
intermediate, or the last in its layer.

5.3. Labeling strategies

Considering challenge (C4) and attack categories, we propose two 
labeling strategies: layer labeling and command labeling.

Layer labeling
To address attacks spanning multiple commands, such as filament 

attacks, we adopt a layer-level labeling strategy based on the Multiple 
Instance Learning (MIL) representation paradigm [31]. In MIL, each 
sample (named a bag) contains a variable number of unique instances, 
each characterized by feature vectors. In the context of G-code files, 
we consider each layer as a bag and each command within that layer 
as an instance. The layer’s label is determined by the presence and 
nature of malicious commands it contains. If a layer has a control 
command changing the default temperatures, fan speed, or Z-value, it 
is considered a malicious layer with a specific class based on the type 
of change. For layers affected by changes to thermodynamic settings 
not explicitly present in the commands, we identify default patterns of 
such settings and label the layer based on the manipulated features. 
For example, if the fan speed is set to 100% before a layer begins, the 
entire layer is labeled as an 𝑠 attack due to the affected 𝑆𝑓  feature 
of movement commands within that layer. However, in practice, layers 
can be affected by multiple attacks simultaneously, which is beyond the 
scope of this study.

Command labeling
For command-level classification, we focus on attacks that target 

individual commands, such as thermodynamic and Z-profile attacks. 
These attacks typically impact one of the following features: 𝑆𝑛, 𝑆𝑏, 𝑆𝑓 , 
𝐿 , and 𝑍 . Therefore, each movement command is classified into one 
𝑡ℎ 𝑣
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of four specific attack types (𝑛, 𝑏, 𝑠, 𝑝) based on the manipulated 
feature. However, any deviation from the default configuration patterns 
is considered potentially malicious, and the specific class is identi-
fied based on the targeted feature. For example, consider a scenario 
where all movement commands within a specific layer of an object 
are expected to have a nozzle temperature of 210◦. If we encounter 
a command with a different temperature (e.g., 200◦), we label it as a 
nozzle temperature attack (𝑛). Conversely, commands that adhere to 
the expected temperature are labeled as benign ().

5.4. ML model architecture and configuration

To classify G-code layers, we employ Bi-LSTM, a variant of Recur-
rent Neural Networks (RNNs), due to its ability to handle sequential 
dependencies among G-code commands, complex feature relationships, 
and the nuanced nature of attacks. By leveraging both past and future 
context [78,79], Bi-LSTM can capture subtle malicious patterns that 
span multiple commands efficiently. The LSTM unit, which represents 
the core of this model, comprises three gating components: input gate, 
forget gate, and output gate, each crucial for updating and preserving 
information over time. The input gate (𝑖𝑡) controls the information 
flow that enters the memory cell. The forget gate (𝑓𝑡), utilizing a 
sigmoid activation function, determines which information to retain or 
discard, significantly impacting the network’s memory and controlling 
the information from the previous cell state 𝑐𝑡−1. However, the cell 
state (𝑐𝑡) is updated based on the last state cell (𝑐𝑡−1), the effects of 
the input and forget gates, and the candidate cell state (𝑐𝑡). Finally, the 
output gate (𝑜𝑡) controls the information flow from the cell state to the 
output [34]. The mathematical operations for each gate and the cell 
state update are: 
𝑖𝑡 = 𝜎(𝑊𝑖 ⊙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 ⊙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 )

𝑐𝑡 = tanh(𝑊𝑐 ⊙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 )

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡
𝑜𝑡 = 𝜎(𝑊𝑜 ⊙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡)

(7)

Here, ⊙ denotes the element-wise multiplication, 𝑊  and 𝑏 are learn-
able parameters, 𝜎 is the sigmoid function, and tanh is the hyperbolic 
tangent function. The LSTM architecture processes a sequence of inputs 
𝑥1, 𝑥2,… , 𝑥𝑡 and generates a sequence of hidden states ℎ1, ℎ2,… , ℎ𝑡. 
Each hidden state ℎ𝑡 is computed as a function of the corresponding 
input 𝑥𝑡, the previous hidden state ℎ𝑡−1, and the current cell state 𝑐𝑡.

In our proposed approach, each G-code layer is represented as a 
sequence of feature vectors, with each vector representing a single 
command. Specifically, for a layer with n commands, we define a 
sequence of feature vectors 𝑓𝑗 , where 𝑗 ∈ 1, 2,… , 𝑛. Each feature 
vector 𝑓𝑗 is defined as 𝑓𝑗 = [𝐶𝑡, 𝐶𝑛, 𝑑, 𝛩, 𝛥𝐸, 𝑆𝑛, 𝑆𝑏, 𝑆𝑓 , 𝐿𝑡ℎ, 𝑍𝑣, 
𝐿𝑛, 𝐿𝑖𝑛]. To ensure uniform input dimensions for our model, we pad 
these sequences to a length of 𝑀 = max(𝑛) commands across all layers 
in the dataset. These padded sequences serve as input to the stacked 
Bi-LSTM hidden layers, as illustrated in Fig.  19. Each layer comprises 
multiple LSTM units that manage the information flows through input, 
output, and forget gates. These Bi-LSTM layers facilitate the hierar-
chical encoding of instances through an instance-level transformation 
function 𝑔𝜓 (𝑓𝑗 ). This function maps the command feature vector (𝑓𝑗) 
to an instance-level representation (ℎ𝑗), using learnable parameters 𝜓 .

To enhance the model’s capability to handle variable-length input 
sequences and capture long-term dependencies, we incorporate an 
attention mechanism into the Bi-LSTM model. The attention mechanism 
gives a different focus to the information generated from the hidden 
layers of Bi-LSTM during prediction [80]. It helps mitigate the vanish-
ing gradient problem and provides insights into the contribution of each 
G-code command to the final layer classification. Consequently, each 
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encoded vector ℎ𝑗 is assigned a weight (𝛽𝑗), indicating its importance, 
calculated using learnable attention parameters 𝑤 and 𝑉 : 

𝛽𝑗 =
exp(𝑤𝑇 tanh(𝑉 ℎ𝑇𝑗 ))

∑𝑀
𝑗=1 exp(𝑤𝑇 tanh(𝑉 ℎ𝑇𝑗 ))

(8)

The layer-level representation 𝜒 is then obtained as the weighted 
sum of the instance-level representations: 

𝜒 =
𝑀
∑

𝑗=1
𝛽𝑗ℎ𝑗 (9)

This representation then serves as input to a classifier function 𝜙(𝜒), 
implemented using a softmax activation function, to get the predicted 
class probabilities 𝑝𝑐 for a given G-code layer: 

𝑝𝑐 = 𝜙(𝜒) =
exp(𝑤𝑇𝑐 𝜒 + 𝑏𝑐 )

∑𝐶
𝑖=1 exp(𝑤

𝑇
𝑖 𝜒 + 𝑏𝑖)

(10)

where 𝐶 is the number of classes, while 𝑤𝑐 and 𝑏𝑐 are the weight vector 
and bias term for class 𝑐, respectively.

During training, the model learns the abovementioned parameters, 
such as 𝜓 , 𝑤, 𝑉 , and classifier weights by minimizing the log-likelihood 
loss between the predicted class probabilities 𝑝 and the actual label 
𝑦 using gradient-based optimization. Finally, and to address the class 
imbalance in the dataset, we employ the focal loss function, which 
focuses on hard-to-classify examples while training Bi-LSTM [35]: 

𝑓𝑜𝑐𝑎𝑙 = −
𝐶
∑

𝑐=1
𝛼𝑐 (1 − 𝑝𝑐 )𝛾𝑦𝑐 log(𝑝𝑐 ) (11)

where 𝛾 adjusts the focus on hard-to-classify examples, and 𝛼𝑐 is a 
weighting factor for a class 𝑐 that is inversely proportional to the class 
frequency (𝑁𝑐) and calculated as 𝛼𝑐 = 𝑁

𝑁𝑐
; 𝑁 is the number of instances 

in the dataset.
The imbalance in our dataset arises from the varying number of 

layers across different objects (see Eq. (1)) and the fact that attacks 
may target different layers. Although various techniques, such as data 
augmentation, oversampling, and undersampling, can be employed to 
address this imbalance, our primary objective is to maintain the realism 
of the G-code dataset. Consequently, we avoid these techniques as they 
can introduce bias or result in the loss of valuable information [81,82].

For the command-level classification of thermodynamic and Z-
profile attacks, we employ Random Forest (RF) and Multilayer Per-
ceptron (MLP) algorithms [36,37]. These techniques are chosen for 
their ability to process high-dimensional feature spaces and capture 
non-linear relationships, which is crucial for detecting subtle variations 
in G-code commands. The RF algorithm’s ensemble nature provides 
robustness against overfitting and offers built-in feature importance 
measures, enhancing interpretability. Meanwhile, the adaptable neural 
network architecture of the MLP model can capture nuanced changes 
within G-code command features. Both classifiers proved their well-
established performance in similar classification tasks, such as detecting 
malicious adjustments to the design and layer thickness, considering 
the features extracted from the side-channel vibration signals [49].

While other classification algorithms are suitable for this task, our 
primary objective is to improve the detection of subtle thermody-
namic and Z-profile changes. Therefore, this finer-grained classification 
approach aims to overcome the potential limitations of the attention-
based MIL in specific scenarios, complementing our layer-based de-
tection strategy and providing a more comprehensive framework for 
identifying diverse G-code attacks.

6. Experiments and discussion

This section presents the experimental comparative baseline, setup, 
evaluation metrics, and optimal model configuration. It also addresses 
the research questions in this study through empirical analysis, identi-
fying the optimal dataset characteristics, feature set, and classification 
model for both layer and command-level detection of G-code attacks.
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Fig. 19. Bi-LSTM model architecture.
6.1. Comparative baseline

The comparative baseline is established through documented phys-
ical impacts and mechanical testing results. The 3D printing workflow 
inherently spans two distinct domains, cyber and physical. In the 
cyber domain, where G-code is generated and potentially manipulated 
before printing, only three previous studies have addressed G-code 
protection through hashing and encryption methods. These existing 
approaches aim to prevent modifications rather than detect or classify 
them. Thus, experimental comparison with them is inappropriate due to 
the main differences in approach (detection vs. prevention). Therefore, 
we provided a theoretical comparison, as shown in Table  1, to highlight 
the key differences and advantages of our approach. This comparison 
demonstrates that while existing methods focus on integrity checking 
and require original files or third-party involvement, our approach 
provides deeper insights by identifying the specific nature and location 
of modifications, operating without requiring reference models, and 
providing a classification of attack types.

In the physical domain, numerous methodologies have been pro-
posed for G-code attack detection, encompassing side-channel analysis, 
real-time print monitoring, and post-production mechanical testing. As 
the attacks examined in this study were identified through visual defor-
mation analysis and mechanical property deviations, we establish our 
validation baseline by leveraging the intrinsic relationships between G-
code features and both physical observations and mechanical properties 
documented in the existing research findings. Our test dataset com-
prises 180 unique designs, specifically chosen to represent a range of 
geometric complexities from simple shapes to complex structures with 
varying layer characteristics. 80% of the testing files were generated 
without any manipulations, and 20% of them incorporated carefully 
implemented manipulations based on documented attack patterns from 
previous research. For example, we manipulated the default nozzle 
temperature with varying values that could be small, impacting the 
mechanical strain and stress of the object, or large, causing observ-
able defects such as material oozing. Additionally, we implemented 
filament attacks with multiple variations that demonstrate measurable 
impacts on the mechanical properties of the object through tensile and 
three-point bending tests [17,23].

For high-magnitude attacks that produce visible defects, we es-
tablish our baseline through physical printing verification and visual 
validation using the Zupfe GCode Viewer to verify attack implemen-
tations. Such impacts include the gaps created by the filament state 
attack, as demonstrated later in Fig.  30 with the printed face shield 
headband and in Fig.  31 with the printed drone propeller [14]. Fur-
ther experimental validation is presented in Fig.  32, which shows the 
material melting and oozing that result from disabling the cooling fan 
during the printing of the drone propeller. Moreover, Fig.  20(a) shows 
visible impacts of filament cavity attacks across multiple infill lines 
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Fig. 20. Visual impacts of filament cavity and Z-Profile attacks.

with various cavity sizes (e.g., 0.2 mm, 0.3 mm, 0.4 mm), significantly 
compromising structural integrity, causing specimens to fracture at 
their central region. Fig.  20(b) shows the impact of the Z-Profile attack 
on the space between the layers. Samples impacted by filament attacks 
were also visualized earlier in Figs.  5 and 6 using the Zupfe GCode 
Viewer. In addition to the defective objects presented in this study, 
previous research by Gao et al. [17] illustrated physical deformations 
caused by changes in fan speed, print speed, and filament extrusion, 
while Si et al. [23] demonstrated how fan speed adjustments affect the 
surface roughness of the objects.

For subtle manipulations that do not cause visible deformations, 
our baseline relies on analyzing the mechanical testing results. Us-
ing the MTS Insight 30 machine, we conducted tensile tests on PLA-
printed regular bars to demonstrate how minor parameter changes 
affect the mechanical properties of the object. We tested specimens 
with modifications in nozzle temperature (±12◦), fan speed (±4%), and 
layer thickness (±0.2 mm). The benign specimens established baseline 
properties with an average peak stress of 23.63 MPa and strain of 
0.026 mm/mm. Higher nozzle temperature increased the peak stress 
to 28.2 MPa due to enhanced layer fusion while maintaining a sim-
ilar strain (0.0256 mm/mm). Conversely, lower temperature reduced 
peak stress to 20.633 MPa with comparable strain (0.025 mm/mm). 
Fan speed modifications also produced notable changes. Higher fan 
speed resulted in 24.033 MPa peak stress with 0.029 mm/mm strain, 
while lower fan speed led to increased stress of 28.1 MPa, attributable 
to slower cooling, enabling better layer fusion. The Z-profile attack 
modifying layer thickness produced the most distinctive mechanical 
behavior. While peak stress decreased slightly to 22.3 MPa, strain 
increased substantially to 0.0506 mm/mm. As illustrated in Fig.  21, 
specimens exhibited clear layer separation during testing, with the 
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Fig. 21. Tensile test for a sample impacted by Z-profile attack.

layers delaminating cleanly rather than breaking, indicating weakened 
interlayer bonding while maintaining structural integrity within each 
layer.

Existing work [22] also provided a comprehensive analysis of the 
mechanical properties of objects impacted by filament and thermody-
namic attacks. The authors demonstrated how creating cavities with 
various sizes, changing the density of the filament, and modifying the 
filament extrusion resulted in premature structural failure at attack 
locations while impacting the strain and stress characteristics of the 
object. Their work further illustrated the impact of subtle changes in 
the nozzle temperature on the residual thermal stress and strain. In 
a subsequent study [15], the same authors expanded their findings 
through mechanical testing of samples impacted by Z-profile attacks 
that modified the layer thickness with various magnitudes ranging from 
0.05 mm to 0.2 mm.

This comprehensive validation approach, combining visual verifi-
cation, simulator analysis, and mechanical testing results, provides a 
robust baseline against which we can evaluate our detection method. 
The correlation between our detection results and these established 
physical impacts demonstrates the practical reliability of our approach 
in identifying both visible and subtle manipulations before printing 
occurs, preventing material waste and potential safety issues.

6.2. Experimental setup

We conducted our experiments on a GNU/Linux cluster equipped 
with 26 nodes of NVIDIA V100, A100, and H100 GPUs and 38 TB of 
RAM. Our environment was built using TensorFlow 2.15.0, CUDA 12.2, 
CUDNN 8.9.2, and Python 3.9.18. Although we leveraged this high-
performance setup, a detailed analysis of the model’s time complexity 
and computational efficiency is beyond the scope of this study.

6.3. Evaluation metrics

In the context of multi-class imbalanced datasets, overall accuracy is 
an insufficient metric for assessing classifier performance [83]. In such 
scenarios, the majority class (benign) impacts the model’s performance 
more than the minority classes (malicious), skewing the accuracy met-
ric. To address this, we focus on evaluating the classifier’s performance 
for each class within the dataset, using precision (𝑃𝑟𝑒𝑐), recall (𝑅𝑒𝑐), 
and F1-score (𝐹1) metrics [84]. We primarily use the F1 measure for 
result discussion and comparison. These metrics are defined as follows:
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• Precision: The ratio of correctly predicted positive instances to the 
total predicted positives.

• Recall (or Sensitivity): The ratio of correctly predicted positive 
instances to all actual positive instances.

• F1-score: The harmonic mean of precision and recall, offering a 
balanced measure beneficial for uneven class distributions.

To facilitate comprehensive comparisons and gain insights into 
overall model performance, we also calculate these metrics across all 
classes [84]. This approach enables us to evaluate Bi-LSTM’s overall 
performance across different configurations to determine the optimal 
setup and with various feature sets to identify the optimal one. Further-
more, it provides a clearer basis for comparing Bi-LSTM performance 
against other RNN models (i.e., LSTM and GRU) and against RF for 
thermodynamic and Z-profile attack detection. However, we employ 
macro-averaging for these metrics. Each metric is calculated inde-
pendently for each class before averaging them, ensuring that each 
class contributes equally to the overall metric. The formulas for the 
macro-averaged metrics are [85]:

𝑃𝑟𝑒𝑐𝑀 =

∑

𝑖
𝑇 𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
𝐶

𝑅𝑒𝑐𝑀 =

∑

𝑖
𝑇 𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
𝐶

𝐹1𝑀 = 2
1∕𝑃𝑟𝑒𝑐𝑀 + 1∕𝑅𝑒𝑐𝑀

Here, 𝑇𝑃𝑖, 𝑇𝑁𝑖, and 𝐹𝑃𝑖 represent the True Positives, True Negatives, 
and False Positives for the 𝑖th class, while 𝐶 indicates the total number 
of classes.

6.4. Identify the model configuration

Our experimental analysis begins with determining the optimal Bi-
LSTM architecture to be used in the subsequent experiments. However, 
we faced two main challenges which are the extensive layer lengths 
(up to 9865 commands in 𝐷𝑆1, 𝐷𝑆2, 𝐷𝑆3, and 9799 in other datasets) 
and extreme class imbalance. To address these challenges, we explored 
various architectural modifications beyond the attention mechanism, 
including changing the numbers of hidden layers and neurons, testing 
various optimizers, adjusting the number of epochs, and fine-tuning the 
𝛾 value in the focal loss function. Our goal is to mitigate large gradients 
and instability while balancing model performance and complexity. The 
key results of these experiments are illustrated in Fig.  22.

To ensure a fair comparison, we conducted a set of experiments 
using fixed training and testing datasets while systematically varying 
Bi-LSTM model configurations. We selected the most diverse training 
dataset (𝐷𝑆6) as our benchmark, evaluating each generated model 
against the same testing dataset that has been discussed in Section 5.1. 
It is crucial to highlight that the overall F1 score of the Bi-LSTM 
model is 0.759, which is primarily due to its limited effectiveness in 
detecting the Z-profile attack, as will be discussed later in this section. 
This specific attack type poses significant detection challenges that are 
effectively addressed by employing finer-grained classification using 
the RF algorithm.

Fig.  22(a) illustrates the overall performance of the model with 
different optimizers, namely Adam, RMSprop, and Nadam. Our findings 
demonstrate that the Nadam optimizer consistently outperforms its 
counterparts across all evaluation metrics. Furthermore, we investi-
gated the impact of gradient clipping on these optimizers. However, 
we observed that without clipping, gradient values escalate dramat-
ically during training, potentially destabilizing the learning process. 
This observation highlights the critical role of gradient management 
in maintaining model stability and convergence. Moreover, Fig.  22(b) 
illustrates that training the model for 200 epochs maximizes model 
performance while mitigating the risk of overfitting. This empirically 
determined epoch count ensures robust learning without compromising 
generalization capabilities. We also conducted an in-depth analysis 
of the focal loss function, exploring its behavior with (𝛾 = 2, 3, 
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Fig. 22. Overall performance of Bi-LSTM with different configurations.
Table 5
Bi-LSTM model configuration.
 Parameter Value

 Input Layer Bidirectional LSTM (256 units)  
 Hidden Layers 3× Bidirectional LSTM (128 units each)  
 Output Layer Dense (8 units) with Softmax activation function  
 Dropout Layer 30%  
 Optimizer Nadam (Learning Rate: 0.001, Gradient Clip: 1.0) 
 Loss Function Focal with 𝛾=2  
 Batch Size 16  
 Epochs 200  

4), as shown in Fig.  22(c). Additionally, we examined the impact of 
considering only the 𝛼 values of the malicious classes (𝑚𝑓𝑜𝑐𝑎𝑙) while 
maintaining the original contribution of the benign class. Our results 
show that reducing the benign’s contribution while focusing more on 
the minor classes with (𝛾 = 2) leads to the best overall performance 
across the metrics. However, we observed that using (𝛾 > 4) leads to 
excessively large gradients, potentially destabilizing the optimization 
process. Based on these results, Table  5 shows the Bi-LSTM model 
configuration adopted in our experiments.

6.5. Identify the optimal dataset characteristics

Upon determining the optimal configuration for the Bi-LSTM model, 
we keep the model architecture constant while varying only the train-
ing data. By consistently evaluating the model against the same test 
dataset across all experiments, we establish a standardized benchmark 
to assess the impact of different training datasets on the model’s per-
formance fairly. This approach enables us to determine the level of 
design and slicing parameter diversity required to detect new patterns 
of G-code attacks in unseen real-world objects. Table  6 demonstrates 
that diversifying the slicing parameters with simple designs negatively 
impacts the detection of benign layers and reduces the distinction 
between filament attacks, as shown with 𝐷𝑆1, 𝐷𝑆2, and 𝐷𝑆3. It also 
illustrates that increasing the diversity of benign designs with 𝐷𝑆4
improves the detection of the benign layers besides the thermodynamic 
attack samples compared to 𝐷𝑆5. Furthermore, including malicious 
samples with simple designs (𝐷𝑆4) reduces the misclassification of 
filament state attacks ( ) as filament speed attacks (), resulting 
in a higher F1 score compared to 𝐷𝑆6.

To better understand the complexity and diversity of designs, we 
utilize the 3DPEA G-code Simulator [86] to illustrate sectional views of 
layers from different designs (Figs.  23 and 24). G-code files generated 
by slicing designs may have infill sections characterized by specific 
patterns. For instance, a Cross infill pattern is used with a rectangular 
bar (Fig.  23(a)), while a Cubic pattern is employed with an ASTM D638 
Type IV specimen (Fig.  23(b)). More complex shapes are shown in Figs. 
24(a) and 24(b), with Figs.  24(c) and 24(d) demonstrating how the 
same object can have different layer shapes.
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Fig. 23. Layer-level sectional view of the rectangular bar and ASTM D638 Type IV 
specimen.

Fig. 24. Layer-level sectional view of different objects.

Typically, all the layers within the same G-code file share the 
same infill patterns, density, and direction. However, more intricate 
designs with detailed features or asymmetrical elements may introduce 
varied infill characteristics across the layers. This diversity in designs 
contributes to improved detection accuracy of the model. Our findings 
indicate that including diverse benign and malicious designs (𝐷𝑆6) 
helps maintain a balance in detecting both benign and malicious layers, 
leading to improved performance across all classes. However, both 𝐷𝑆4

and 𝐷𝑆6 demonstrate strong performance, with 𝐷𝑆4 outperforming 
𝐷𝑆6 by an average of 4.97%, excluding the 𝑝 class. On the other hand, 
limiting the value ranges of infill characteristics to 70% of the total 
in both benign and malicious samples reduces the model performance, 
as observed in 𝐷𝑆6𝑝. This observation emphasizes the importance of 
considering all possible values of infill patterns, density, and direction 
for a comprehensive training dataset.
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Table 6
Performance of Bi-LSTM with different training dataset characteristics.
 Class 𝐷𝑆1 𝐷𝑆2 𝐷𝑆3 𝐷𝑆4 𝐷𝑆5 𝐷𝑆6𝑝 𝐷𝑆6

 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1  
  0.957 0.955 0.956 0.949 0.872 0.909 0.943 0.564 0.706 0.947 0.980 0.963 0.960 0.403 0.567 0.948 0.829 0.884 0.954 0.837 0.891 
  0.968 1.000 0.984 0.764 0.928 0.838 0.183 0.978 0.309 0.960 0.934 0.947 0.937 0.978 0.957 0.909 0.994 0.949 0.848 0.989 0.913 
  0.548 0.937 0.691 0.848 0.296 0.439 0.738 0.328 0.454 1.000 0.550 0.709 0.533 0.989 0.693 0.526 0.841 0.648 0.859 0.746 0.799 
  1.000 0.387 0.558 0.650 0.664 0.657 0.589 0.840 0.693 0.739 0.954 0.833 0.811 0.181 0.296 0.621 0.227 0.332 0.992 0.521 0.683 
 𝑛 0.855 0.865 0.860 0.688 0.889 0.776 0.875 0.859 0.867 0.987 0.900 0.942 0.857 0.842 0.849 0.993 0.778 0.872 0.706 0.942 0.807 
 𝑏 0.979 0.957 0.968 0.845 0.937 0.888 0.761 0.973 0.854 0.949 0.945 0.947 0.948 1.000 0.973 0.891 0.992 0.939 0.914 1.000 0.955 
 𝑠 0.579 0.923 0.712 0.447 0.819 0.579 0.189 0.846 0.310 0.955 0.819 0.882 0.399 0.951 0.562 0.852 0.857 0.855 0.975 0.863 0.915 
 𝑝 0.038 0.029 0.033 0.029 0.067 0.04 0.029 0.167 0.051 0.000 0.000 0.000 0.048 0.632 0.089 0.03 0.119 0.049 0.068 0.260 0.107 
Table 7
Performance of Bi-LSTM with different feature sets.
 Class 𝐷𝑆𝑖𝑛 𝐷𝑆𝑛 𝐷𝑆𝑡ℎ 𝐷𝑆𝑧 𝐷𝑆𝑎𝑙𝑙
 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1  
  0.943 0.818 0.876 0.919 0.608 0.732 0.939 0.833 0.883 0.947 0.778 0.854 0.954 0.837 0.891 
  0.702 1.000 0.825 0.227 0.580 0.327 0.947 0.983 0.965 0.869 0.917 0.892 0.848 0.989 0.913 
  0.636 0.444 0.523 0.402 0.493 0.443 0.592 0.972 0.736 0.549 0.739 0.631 0.859 0.746 0.799 
  0.619 0.546 0.580 0.130 0.408 0.197 0.825 0.277 0.415 0.521 0.471 0.494 0.992 0.521 0.683 
 𝑛 0.773 0.737 0.754 0.958 0.661 0.782 0.903 0.819 0.859 0.937 0.871 0.903 0.706 0.942 0.807 
 𝑏 0.964 0.953 0.959 0.355 0.992 0.523 0.930 0.992 0.960 0.951 0.988 0.969 0.914 1.000 0.955 
 𝑠 0.919 0.874 0.896 0.762 0.846 0.802 0.935 0.868 0.900 0.929 0.934 0.932 0.975 0.863 0.915 
 𝑝 0.036 0.146 0.058 0.036 0.178 0.060 0.028 0.105 0.044 0.035 0.169 0.058 0.068 0.260 0.107 
Fig. 25. Overall performance of Bi-LSTM with different feature sets.

6.6. Identify the optimal feature set

We conducted this experiment using the 𝐷𝑆6 dataset and five 
variations of it, each excluding a specific feature: 𝐷𝑆𝑖𝑛 (excluding layer 
indicator), 𝐷𝑆𝑛 (excluding layer number), 𝐷𝑆𝑡ℎ (excluding layer thick-
ness), 𝐷𝑆𝑧 (excluding Z-value), while 𝐷𝑆𝑎𝑙𝑙 considers all the features. 
Table  7 shows that incorporating all features significantly enhances the 
differentiation between benign and Z-profile attack samples. However, 
excluding the Z-value feature reduces this distinction but notably im-
proves the detection of thermodynamic attacks. In contrast, excluding 
the layer thickness negatively impacts the detection of nozzle tem-
perature and Z-profile attacks due to the strong correlation between 
layer thickness and these manipulated features, as shown in Table 
2. Furthermore, the layer indicator and layer number features are 
essential for better detecting the nozzle temperature and fan speed 
attacks.

The overall performance of the Bi-LSTM model with the different 
feature sets is illustrated in Fig.  25. It demonstrates the highest impact 
of excluding the layer number on the overall performance of the model, 
followed by excluding the layer indicator. Moreover, it shows that 
excluding either the layer thickness or the Z-value has a comparable 
impact on the overall performance. Notably, the model achieves op-
timal performance across all metrics when no features are excluded, 
highlighting the importance of considering all the extracted features.
227 
6.7. Evaluation of layer classification

This section validates the choice of the Bi-LSTM model for detecting 
G-code attacks at the layer level. Given the sequential dependencies be-
tween G-code commands, complex feature relationships, and intricate 
attack footprints, RNN models are well-suited for classifying the layers. 
The LSTM model effectively captures long-term dependencies between 
G-code commands while processing sequences in one direction, consid-
ering only the past and present data. However, it does not take into 
account future data points when making predictions. In contrast, the 
Bidirectional LSTM (Bi-LSTM) model processes G-code data in both 
forward and backward directions, providing a more comprehensive 
context for each point in the sequence. The Gated Recurrent Unit (GRU) 
model, introduced in 2014 [87], offers a simplified gated structure 
compared to LSTM. However, this model lacks separate memory cells 
and output gates, leading to full exposure of the unit’s content [88]. 
While this simplification can be advantageous in some applications, it 
may limit GRU’s capacity to capture the complex patterns present in 
G-code attacks.

Table  8 presents the performance comparison of LSTM, Bidirectional 
GRU (Bi-GRU) [89], and Bi-LSTM models across all classes. These 
models were trained on the 𝐷𝑆6 dataset with identical configurations ( 
Table  5), differing only in their recurrent unit types (i.e., LSTM, GRU). 
We observe that the cavity attack () is recognized effectively by all 
the models due to its distinctive footprint across G-code commands, as 
shown in Fig.  14. In contrast, the models struggle with distinguishing 
between filament speed () and filament state ( ) attacks because 
of their overlapping patterns. An example of this overlap is formally 
demonstrated in Section 5.2, which illustrates how considering only the 
red section in Fig.  17 may cause the model to classify it as a filament 
state attack. However, incorporating the preceding and following com-
mands (green sections) leads the model to capture the entire trace of the 
filament speed attack and distinguish it from the filament state attack. 
Therefore, the Bi-LSTM model gives a better F1 score for detecting these 
attacks compared to other models.

As demonstrated by Table  8, the Bi-LSTM model also exhibits supe-
rior performance in recognizing the thermodynamic attacks, including 
nozzle temperature (𝑛), bed temperature (𝑏), and fan speed (𝑠) 
attacks. These attacks alter multiple features such as 𝐶𝑡, 𝐶𝑛, 𝑆𝑛, 𝑆𝑏, 
and 𝑆𝑓 , which are related to layer characteristics like 𝐿𝑡ℎ, 𝐿𝑛, and 𝐿𝑖𝑛. 
The widespread impact on various features results in a more distinct 
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Table 8
Performance comparison of the LSTM, Bi-GRU, and Bi-LSTM models.
 Class LSTM Bi-GRU Bi-LSTM

 Prec Rec F1 Prec Rec F1 Prec Rec F1  
  0.953 0.651 0.774 0.939 0.624 0.749 0.954 0.837 0.891  
  0.884 0.884 0.884 0.929 0.807 0.864 0.848 0.989 0.913  
  0.457 0.979 0.623 0.447 0.624 0.521 0.859 0.746 0.799  
  0.515 0.071 0.125 0.168 0.101 0.126 0.992 0.521 0.683  
 𝑛 0.879 0.889 0.884 0.927 0.813 0.866 0.706 0.942 0.807  
 𝑏 0.962 0.996 0.979 0.947 0.988 0.967 0.914 1.000 0.955  
 𝑠 0.667 0.901 0.766 0.623 0.879 0.729 0.975 0.863 0.915  
 𝑝 0.042 0.325 0.074 0.045 0.380 0.081 0.068 0.260 0.107  

Fig. 26. Overall Performance Comparison of the LSTM, Bi-GRU, and Bi-LSTM Models.

footprint across the layer, enhancing the detection capability of the 
model for these attacks. Conversely, the Z-profile attack (𝑝) changes 
only the Z parameter of movement commands, impacting the Z-value 
(𝑍𝑣) and, consequently, the layer thickness (𝐿𝑡ℎ). However, with only 
two features affected, the Z-profile attack creates a minor footprint 
across the feature vectors within a layer, making it difficult for the 
model to recognize this attack accurately. These subtle changes require 
finer-grained classification to be detected using the RF algorithm.

Fig.  26 shows that while the Bi-GRU model also handles long-term 
dependencies in G-code sequences in both directions, it still underper-
forms compared to other models due to its simpler unit structure, which 
lacks the separate memory cells found in LSTM units. The memory 
cell enables the model to maintain information over longer sequences, 
a crucial feature for G-code attack detection, where attack patterns 
spread across multiple commands or different areas within a layer. As 
a result, LSTM slightly outperforms the GRU model, showing a 4.18% 
improvement in F1 score. More significantly, Bi-LSTM demonstrates 
a substantial performance gain over Bi-GRU, with a 23.81% increase 
in F1 score. This improvement highlights Bi-LSTM’s superior ability 
to manage the complex interrelationships between G-code commands 
across entire layers.

To validate our choice of the focal loss function, we evaluate 
the Bi-LSTM model’s performance using various techniques designed 
to address dataset imbalance. We compared the focal loss function 
(𝑓𝑜𝑐𝑎𝑙) against the weighted cross-entropy loss function (𝑤𝑐𝑒) [90] 
and the cost-sensitive learning (Cost) approach [84]. However, the 
standard categorical cross-entropy loss, typically used for multi-class 
classification problems, often performs poorly on imbalanced datasets. 
To address this, the weighted version of this function (𝑤𝑐𝑒) assigns 
higher weights to minority classes, thereby increasing their importance 
during training as follows: 

𝑤𝑐𝑒 = −
𝐶
∑

𝑐=1
𝑤𝑐𝑦𝑐 log(𝑝𝑐 ) (12)

Here, 𝑤𝑐 represents the weight of class 𝑐, typically inversely propor-
tional to its frequency as illustrated in Table  4.
228 
Table 9
Performance evaluation of Bi-LSTM with different class imbalance techniques.
 Class 𝑤𝑐𝑒 Cost 𝑓𝑜𝑐𝑎𝑙
 Prec Rec F1 Prec Rec F1 Prec Rec F1  
  0.957 0.639 0.767 0.948 0.974 0.961 0.954 0.837 0.891  
  0.871 0.934 0.901 0.923 1.000 0.960 0.848 0.989 0.913  
  0.372 0.677 0.480 0.671 0.757 0.711 0.859 0.746 0.799  
  0.386 0.092 0.149 0.734 0.546 0.627 0.992 0.521 0.683  
 𝑛 0.880 0.859 0.869 0.987 0.871 0.925 0.706 0.942 0.807  
 𝑏 0.996 0.988 0.992 0.981 0.992 0.986 0.914 1.000 0.955  
 𝑠 0.871 0.967 0.917 0.994 0.874 0.929 0.975 0.863 0.915  
 𝑝 0.044 0.371 0.079 0.000 0.000 0.000 0.068 0.260 0.107  

On the other hand, the Cost approach integrates class-dependent 
cost items into Bi-LSTM backpropagation learning, with each class’s 
cost inversely proportional to its frequency (𝑁𝑐) raised to a power 𝜆. 
After exploring 𝜆 values from 0.1 to 0.9, we found that 𝜆 = 0.3 yields 
the best overall performance. 

𝐶𝑜𝑠𝑡(𝑐) =
(

1
𝑁𝑐

)𝜆
(13)

Table  9 illustrates that adopting the 𝑤𝑐𝑒 function enhances the 
detection of thermodynamic attacks but at the expense of recogniz-
ing the benign samples, which represent the majority class. Despite 
assigning high weights to the ,  , and 𝑝 classes based on their 
frequencies in Table  4, this function does not significantly improve their 
detection. This limitation arises from 𝑤𝑐𝑒’s focus on class frequency 
rather than the classification complexity of such attacks, resulting in 
poor detection performance. In contrast, the cost approach improves 
the recognition of more frequent classes, including benign samples and 
thermodynamic attacks, at the expense of rarer ones, such as filament 
speed, filament state, and Z-profile attacks. However, this method ad-
dresses class imbalance without considering the classification difficulty 
of each example. Consequently, it performs poorly with complex attack 
types with fewer samples in the dataset, such as filament speed and 
filament state attacks. Compared to these approaches, the focal loss 
function (𝑓𝑜𝑐𝑎𝑙) exhibits superior performance across all classes by 
simultaneously addressing class imbalance and classification difficulty. 
It focuses on hard-to-classify examples and dynamically adjusts the 
loss for each instance based on its classification complexity, which is 
particularly beneficial for subtle and intricate filament attacks.

Finally, to further validate the robustness of our chosen Bi-LSTM 
approach and address potential overfitting concerns, we conduct a 
comprehensive cross-validation analysis. We precisely divide the 𝐷𝑆6
dataset into five equal folds, and in each validation round, four of 
them are utilized for training while one fold is reserved for validation, 
ensuring comprehensive coverage of all data patterns. We ensure that 
G-code layers from the same file appear exclusively in either the 
training or validation folds. The results, as shown in Table  10, provide 
strong evidence against overfitting. Across different folds, the model 
maintains macro F1 scores ranging from 0.728 to 0.858, with corre-
sponding precision (0.783–0.844) and recall (0.779–0.878) showing 
balanced performance. This consistency across different data splits is 
particularly noteworthy given the challenges of our multi-class classifi-
cation task with imbalanced data distribution. Moreover, the variation 
between folds indicates that the model is learning generalizable pat-
terns rather than memorizing specific instances. It is important to note 
that the relatively lower F1 scores result from the misclassification 
between benign and Z-profile attack samples, aligning with our previ-
ous findings in Table  8. This performance is expected given the subtle 
nature of Z-profile manipulations detected better by the command-level 
classification using the RF algorithm.



H. Ali et al. Journal of Manufacturing Processes 145 (2025) 211–235 
Table 10
5-Fold cross-validation results for the Bi-LSTM Model.
 CV round Overall 

𝑃𝑟𝑒𝑐𝑀
Overall
𝑅𝑒𝑐𝑀

Overall 
𝐹1𝑀

 

 𝑅𝑜𝑢𝑛𝑑1 0.833 0.840 0.818  
 𝑅𝑜𝑢𝑛𝑑2 0.844 0.878 0.858  
 𝑅𝑜𝑢𝑛𝑑3 0.843 0.855 0.841  
 𝑅𝑜𝑢𝑛𝑑4 0.783 0.807 0.728  
 𝑅𝑜𝑢𝑛𝑑5 0.787 0.779 0.732  
 𝑅𝑜𝑢𝑛𝑑𝑚𝑒𝑎𝑛 0.818 0.83.2 0.795  

6.8. Evaluation of command classification

These experiments aim to demonstrate the superiority of command-
level classification over layer-level classification using Bi-LSTM in de-
tecting subtle changes caused by thermodynamic and Z-profile attacks. 
In such scenarios, certain layers are affected without obvious mali-
cious patterns within their commands (Challenge C4). To this end, 
we prepare an efficient dataset of commands and identify the suitable 
feature set and classifier for optimal results to be compared with the 
Bi-LSTM model, focusing primarily on thermodynamic and Z-profile 
attacks. For experimental settings, we employed the RF algorithm with 
its default configuration of 100 trees. To mitigate class imbalance, we 
assigned weights to classes inversely proportional to their frequencies 
in the training set (see Table  4), ensuring that underrepresented classes 
receive higher weights, thereby balancing their influence during train-
ing. For the MLP architecture, we conducted extensive experiments to 
optimize its parameters. The final configuration consists of three hidden 
layers, with 256 neurons in the first layer and 128 neurons in each of 
the following layers. It uses ReLU activation, focal loss function, and 
Adam optimizer, with a batch size of 32, and is trained for 100 epochs. 
This architecture was chosen based on its superior performance in our 
experiments.

Dataset preparation
We used the dataset 𝐷𝑆6 represented by all the extracted features 

for training. We also created a new test dataset (𝑇 𝑒𝑠𝑡2) for evaluation. 
𝑇 𝑒𝑠𝑡2 is a variant of the original test dataset with control commands 
(M-commands) strategically removed from certain layers. For further 
clarification, we typically adjust the temperatures and fan speed of 
movement commands within a layer by injecting the corresponding 
M-commands into that layer or by manipulating the parameters of 
existing ones. However, in the 𝑇 𝑒𝑠𝑡2 dataset, we removed such injected 
commands from specific layers. Instead, these layers are influenced by 
external M-commands that lie outside their own commands. For the Z-
profile attack samples, we reduced the number of bed level alterations 
by removing the added Z parameter from movement commands and 
implementing a single change to the actual Z-value at the start of each 
of these layers. This approach creates a more challenging scenario to 
test both the Bi-LSTM model and the RF algorithm.

To create a labeled command dataset (𝐷𝑆𝑝𝑎𝑟𝑡), we select a repre-
sentative group of 20 commands from each set of commands sharing 
the same values of 𝑆𝑛, 𝑆𝑏, 𝑆𝑓 , 𝐿𝑡ℎ, 𝑍𝑣, 𝐿𝑛, and 𝐿𝑖𝑛 across all layer 
variations (discussed in Section 5.2). The resulting 𝐷𝑆𝑝𝑎𝑟𝑡 consists of 
319687 commands, 270491 of them are benign (), 11418 are nozzle 
temperature (𝑛), 16562 are bed temperature (𝑏), 9403 are fan speed 
(𝑠), and 11813 are Z-profile (𝑝). While 𝑇 𝑒𝑠𝑡2 comprises 148139, 
4952, 7765, 5658, and 9800 commands from each class, respectively.

Experimental results
Our experiments start by discussing the impact of training dataset 

size on the detection performance of the RF algorithm. Table  11 com-
pares the performance of the RF model trained on 𝐷𝑆𝑝𝑎𝑟𝑡 and 𝐷𝑆𝑡𝑜𝑡𝑎𝑙, 
which includes all the commands from all the layers. However, both 
datasets are represented using the complete set of 12 extracted features. 
While 𝐷𝑆  slightly improves detection for certain classes such as 
𝑡𝑜𝑡𝑎𝑙
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Table 11
Performance of RF with different training datasets.
 Class 𝐷𝑆𝑝𝑎𝑟𝑡 𝐷𝑆𝑡𝑜𝑡𝑎𝑙
 Prec Rec F1 Prec Rec F1  
  0.974 0.994 0.984 0.986 0.992 0.989 
 𝑛 0.903 0.837 0.869 0.744 0.797 0.769 
 𝑏 0.990 0.997 0.993 0.999 0.996 0.997 
 𝑠 0.957 0.915 0.935 0.999 0.931 0.964 
 𝑝 0.956 0.711 0.816 0.913 0.774 0.838 

Table 12
Performance of RF with different feature sets.
 Class 12-Features 14-Features

 Prec Rec F1 Prec Rec F1  
  0.974 0.994 0.984 0.969 0.997 0.983 
 𝑛 0.903 0.837 0.869 0.923 0.827 0.872 
 𝑏 0.990 0.997 0.993 0.999 0.998 0.998 
 𝑠 0.957 0.915 0.935 0.964 0.908 0.935 
 𝑝 0.956 0.711 0.816 0.966 0.632 0.764 

𝑝, 𝐷𝑆𝑝𝑎𝑟𝑡 achieves comparable results with reduced training over-
head. The efficiency of 𝐷𝑆𝑝𝑎𝑟𝑡, despite being a subset, is attributed 
to the sampling strategy that effectively captures the variability of G-
code commands, considering their repetitive nature within layers. For 
example, all commands within a layer might have the same nozzle 
temperature, resulting in a consistent feature (𝑆𝑛) throughout the layer.

After identifying 𝐷𝑆𝑝𝑎𝑟𝑡 as the appropriate training dataset, we 
investigate the impact of incorporating additional features while rep-
resenting the G-code commands on the RF’s performance. Table  12 
illustrates the effect of including 𝐶𝑖𝑑𝑥 and 𝐶𝑖𝑛 features alongside the 
primary set of 12 features on RF’s performance trained on 𝐷𝑆𝑝𝑎𝑟𝑡. 
While including these features slightly improves the detection of 𝑛
and 𝑏 attacks, it negatively impacts detecting the 𝑝 attack. However, 
these features provide positional information within the layer, which 
is not relevant for Z-profile attacks that typically affect the Z-value 
consistently across the entire layer. Therefore, including these features 
leads the RF algorithm to assign less importance to the Z-value feature, 
which is essential for identifying Z-profile attacks.

With these 12 identified features, Fig.  27 illustrates their relative 
importance in detecting thermodynamic and Z-profile attacks. The RF 
classifier assigns the highest weights to features most relevant for 
attack detection, such as 0.2599 to bed temperature (𝑆𝑏), 0.1921 to 
fan speed (𝑆𝑓 ), 0.1608 to Z-value (𝑍𝑣), and 0.1494 to nozzle temper-
ature (𝑆𝑛) features. Our analysis reveals that the feature importance 
rankings strongly align with theoretical expectations of G-code attack 
characteristics. Moreover, for class-specific feature importance, the bed 
temperature feature (𝑆𝑏) demonstrates dominant importance (0.7989) 
for bed temperature attack detection, while nozzle temperature (𝑆𝑛) 
shows significant weighting (0.5568) for nozzle temperature attacks. 
Similarly, Z-value (𝑍𝑣) exhibits substantial importance (0.5462) for Z-
profile attacks, and fan speed (𝑆𝑓 ) maintains meaningful contribution 
(0.3843) for fan speed attack detection. This differentiated feature 
importance distribution provides evidence that the model has learned 
meaningful command patterns rather than overfitting to noise.

The final experiment further provides strong evidence against over-
fitting the RF algorithm while showing a robust pattern of general-
ization. First, we applied hyperparameter tuning at the model level, 
setting the maximum tree depth to 20, minimum samples for split to 
10, and minimum samples per leaf to 4. However, the classifier exhibits 
slight deviations from its performance using the default configurations. 
Overall, RF gives an F1 score of 0.9069, showing strong generalization 
capabilities. The performance varies logically across attack types, with 
high performance on distinct attack patterns (bed temperature attacks: 
0.9949 F1) and relatively lower but still robust performance on subtle 
modifications (Z-profile attacks: 0.8105 F1). This variation reflects the 
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Fig. 27. Overall feature importance assigned by RF.

Fig. 28. Learning curves showing the RF performance in terms of F1-macro training 
and cross-validation scores with varying training dataset size.

inherent characteristics of different attack types rather than indicating 
overfitting artifacts. Moreover, Fig.  28 shows the learning curve uti-
lizing Cross-Validation (CV) with K=5 and 319668 command entries, 
where sampling sizes followed a logarithmic scale. The F1 macro scores 
represent the performance of the RF classifier at different training 
sample sizes. Starting with a training score of 0.9182 (±0.0160) and CV 
score of 0.5993 (±0.0473), the model steadily improves to a training 
score of 0.9656 (±0.0071) and CV score of 0.9253 (±0.0059). The sig-
nificant reduction in the training-CV gap (from 0.3189 to 0.0403) and 
the decreasing standard deviations indicate proper learning rather than 
memorization. Notably, the CV scores show consistent improvement up 
to 0.33 without plateauing early, indicating effective learning of under-
lying patterns. This combination of the high F1 scores, theoretically 
aligned feature importance, and stable learning curves demonstrates 
that our model has achieved genuine learning of G-code attack patterns 
rather than overfitting to training.

With the optimal dataset and feature set determined, our final 
step is identifying the best classifier between RF and MLP. Table  13 
highlights the RF’s superior performance across all classes, particularly 
in detecting 𝑛 and 𝑝) attacks with an F1 score of 0.869 and 0.816, 
respectively. The RF’s ensemble approach enables it to capture complex 
patterns in G-code data more effectively than the MLP’s single network 
structure, especially for the nuanced changes caused by these attack 
types. Moreover, RF inherently performs feature selection, focusing on 
the most relevant attributes for each attack type. This is crucial for 
distinguishing between different types of thermodynamic attacks and 
identifying subtle Z-profile modifications.

Building on the best results obtained with the RF classifier trained 
on 𝐷𝑆𝑝𝑎𝑟𝑡 using the main 12 features, we compare these outcomes with 
the performance of the Bi-LSTM model on 𝑇 𝑒𝑠𝑡 , as shown in Table  14. 
2
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Table 13
Performance comparison of MLP and RF, trained on 𝐷𝑆𝑝𝑎𝑟𝑡.
 Class MLP RF

 Prec Rec F1 Prec Rec F1  
  0.959 0.886 0.921 0.974 0.994 0.984 
 𝑛 0.216 0.822 0.342 0.903 0.837 0.869 
 𝑏 1.000 0.917 0.957 0.990 0.997 0.993 
 𝑠 0.868 0.900 0.884 0.957 0.915 0.935 
 𝑝 0.493 0.385 0.432 0.956 0.711 0.816 

Table 14
Performance comparison of Bi-LSTM (layer classification) and RF (command classifica-
tion).
 Class Bi-LTSM RF

 Prec Rec F1 Prec Rec F1  
  0.923 0.661 0.771 0.974 0.994 0.984 
 𝑛 0.365 0.316 0.339 0.903 0.837 0.869 
 𝑏 0.881 0.349 0.500 0.990 0.997 0.993 
 𝑠 0.399 0.390 0.394 0.957 0.915 0.935 
 𝑝 0.049 0.374 0.087 0.956 0.711 0.816 

Fig. 29. Overall performance comparison of Bi-LSTM (layer classification) and RF 
(command classification).

The RF model demonstrates superior command-level classification, par-
ticularly in detecting Z-profile attacks, with an F1 score of 81.6%. This 
highlights the effectiveness of our finer-grained approach in addressing 
the limitations of the Bi-LSTM model. When entire layers are impacted 
by malicious changes outside of their commands, there are no injected 
malicious control commands to trigger Bi-LSTM’s attention mechanism. 
Thus, the consistent values of the impacted feature across all layer 
commands make it difficult for attention-based Bi-LSTM to recognize 
such cases, which are included in 𝑇 𝑒𝑠𝑡2. Furthermore, these external 
modifications impact fewer features across the layer. For instance, 
injecting an M-command affects both the 𝐶𝑡, 𝐶𝑛, and one of the 𝑆𝑛, 
𝑆𝑏, and 𝑆𝑓  features. In contrast, an external command impacts only 
one feature among 𝑆𝑛, 𝑆𝑏, and 𝑆𝑓 , resulting in a more subtle footprint 
for the Bi-LSTM model to detect.

Finally, Fig.  29 illustrates how applying finer-grained classification 
at the command level using the RF algorithm gives better overall detec-
tion of subtle thermodynamic and Z-profile manipulations compared to 
the Bi-LSTM model.

7. Real-world case studies

This section evaluates the efficacy of our approach in real-world 
scenarios previously considered in the literature, such as printing face 
shield headbands [29] and drone propellers [14]. The code and datasets 
used in these case studies are available in our GitHub repository1

1 https://github.com/HalaAli198/ML-based-G-code-Attacks-Detection

https://github.com/HalaAli198/ML-based-G-code-Attacks-Detection
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Table 15
Slicing parameters used to generate the G-code file for 
the face shield headband design.
 Parameter Value  
 Material Generic PLA 
 Nozzle Diameter 0.4 mm  
 Print Profile fast  
 Layer Thickness 0.2 mm  
 Infill Pattern Lines  
 Infill Density 100%  
 Infill Direction 45◦  
 Print Speed 50 mm/s  
 Initial Print Temp. 210◦  
 Print Temp. 205◦  
 Fan Speed 100%  

7.1. Case study 1 (face shield headband):

During the COVID-19 pandemic, 3D printing technology has been 
widely used for producing personal protective equipment (PPE), specif-
ically face shield headbands [91]. This global crisis necessitated un-
precedented levels of digital file exchange between designers and man-
ufacturers all over the world, introducing significant security risks to 
the design and G-code files. Malicious manipulation of these files could 
compromise PPE functionality, endangering healthcare professionals in 
critical environments.

To validate the detection capabilities of our approach against such 
malicious manipulations, we conducted an experiment using a face 
shield headband design. The STL file was downloaded from the Thin-
giverse repository [67] and sliced by Ultimaker Cura 5.9.0 using the 
parameters detailed in Table  15 to generate a G-code file comprising 
215 distinct layers. We then introduced localized manipulations to 
the generated G-code, targeting the shield’s critical joint points across 
layers 1–48, as illustrated in Fig.  30(a). These manipulations included 
creating structural discontinuities at crucial junctions through a fila-
ment state attack, as shown in Fig.  30(b). Physical verification of the 
attack’s impact, demonstrated in Fig.  30(c), revealed significant struc-
tural compromises in the manufactured product, with the introduction 
of critical failure points rendering the headband unsuitable for use, as 
evidenced in Fig.  30(d).

For evaluation, we created a test dataset by compromising the gen-
erated G-code using the attack methods described earlier in the study 
(see Section 2.3). This dataset comprises eight G-code files, including 
one benign file and one file for each type of attack. After processing, 
the dataset contains 628 benign layers derived from the original file 
and unaffected layers within the compromised files. The cavity attack 
impacts 141 layers, introducing cavities with a size of 0.6 mm. The 
filament density attack reduces filament density by 40%, affecting all 
layers except the bottom two and top two, with five lines impacted 
per layer. The filament state attack disables material deposition for 
three lines across the first 48 layers, targeting joint points, while the 
remaining attacks affect all of the 215 layers with various adjustments.

Table  16 presents the testing results. As all attacks target the same 
file, and due to the overlapping patterns of filament attacks, it is ex-
pected for the model to exhibit some misclassification between classes. 
Furthermore, with the thermodynamic attacks, the layer sequences 
remain consistent across copies, with only attack-specific modifica-
tions differing. Such changes in consistent layers effectively trigger 
the Bi-LSTM’s attention mechanism, resulting in enhanced attack type 
recognition compared to the testing results against 𝑇 𝑒𝑠𝑡1 in the previous 
experiments. However, the lower F1 score with the Z-profile attack 
(𝑝), as discussed earlier, arises from its subtle footprint, which is 
detected better by command-level classification using the RF algorithm. 
Overall, the Bi-LSTM model achieves a macro F1-score of 0.856, high-
lighting its efficacy in detecting manipulations in real-world scenarios 
before printing starts, thereby saving time, material, and effort.
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Fig. 30. Face shield headband sabotaged by the filament state attack.

Table 16
Performance of Bi-LSTM with compromised variants of face shield 
headband G-code.
 Class Prec Rec F1  
  0.807 0.949 0.872 
  0.903 0.794 0.845 
  0.989 0.834 0.905 
  0.894 0.875 0.884 
 𝑛 0.973 0.851 0.908 
 𝑏 0.901 0.930 0.915 
 𝑠 0.936 0.744 0.829 
 𝑝 0.680 0.693 0.687 

7.2. Case study 2 (drone propeller):

In addition to face shield headbands, 3D printing technology has 
also been used to produce drone propellers. Belikovetsky et al. [14] 
demonstrated a real-world G-code attack targeting drone propellers by 
introducing gaps at the joint points, which caused the drone to fail 
shortly after takeoff, as illustrated in Fig.  31. The gaps were created by 
mimicking the behavior of the filament state attack, setting identical
‘‘E’’ parameters for consecutive G1 commands, as detailed in Table 2 
of their paper. The study also highlighted the potential risks of com-
promising G-code files through vulnerable slicing software. Building 
on this observation, we identified a new attack vector targeting plain-
text G-code during its transmission via Inter-Process Communication 
(IPC) between the processes of the Ultimaker Cura application. This 
vulnerability, registered as CVE-2024-51330,2 demonstrates the critical 
need for robust security measures to protect G-code in 3D printing 
workflows.

2 https://nvd.nist.gov/vuln/detail/CVE-2024-51330

https://nvd.nist.gov/vuln/detail/CVE-2024-51330
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Fig. 31. Drone propellers sabotaged by G-code attack [14].

Table 17
Performance of RF with compromised variants of drone propeller G-code.
 Class Prec Rec F1  
  0.6979 0.9205 0.7939 
 𝑛 0.8570 0.8890 0.8727 
 𝑏 0.9975 0.9981 0.9978 
 𝑠 0.9939 0.7789 0.8733 
 𝑝 0.8852 0.7597 0.8177 

Our first case study demonstrated the filament state attack. There-
fore, in this case study, we illustrate the effects of a different attack, 
disabling the cooling fan, during the fabrication of the drone propeller. 
To this end, we downloaded the STL file for the propeller from the
Thingiverse repository, sliced by Ultimaker Cura 5.9 using the same 
parameters detailed in Table  15, and then injected an M107 command 
at the beginning of the G-code file by exploiting our discovered vulner-
ability to disable the cooling fan. This attack caused material melting as 
shown in Fig.  32(a). Furthermore, Figs.  32(b) and 32(c) illustrate the 
front and back sides of the defective propeller. The back side, which 
faced the support structures during printing, exhibits severe stringing 
or oozing - thin, hair-like plastic strands due to filament oozing from 
the hot nozzle without proper cooling. These defects impact the print 
quality, making it unsuitable for use.

The defects observed in the propeller print are typically caused 
not only by adjusting the fan speed but also by changing the nozzle 
temperature, bed temperature, and layer thickness. Large gaps between 
layers reduce surface area contact, thus weakening layer adhesion. 
To demonstrate the RF algorithm’s capability in detecting such subtle 
changes, we created a test dataset by compromising the G-code with 
thermodynamic and Z-profile attacks. The dataset comprises five 87-
layer G-code files, one benign and one for each attack type. Processing 
these files yields 54260 benign commands (), 54346 extruder temper-
ature attack commands (𝑛), 54347 bed temperature attack commands 
(𝑏), 54258 fan speed attack commands (𝑠), and 54260 Z-profile attack 
commands (𝑝).

Given the finer-grained classification at the command level, and due 
to targeting the same commands with various attacks, the chance of 
misclassifying the malicious commands as benign increased, leading to 
an F1 score of 0.7939 with the bending class as demonstrated in Table 
17. However, in our previous experiments, the RF algorithm showed 
improved performance with fewer misclassifications while testing on 
a smaller dataset comprising commands from various G-code files 
(𝑇 𝑒𝑠𝑡2). This improvement can be attributed to the greater diversity in 
base patterns and command contexts across different files, which helps 
the classifier better distinguish between normal variations and attack-
induced changes. Moreover, we observe that bed temperature attack 
(𝑏) consistently achieves the highest F1 scores (0.997), aligning with 
the high importance assigned to its corresponding bed temperature 
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Fig. 32. Drone propeller sabotaged by switching off the cooling fan.

feature (𝑆𝑏), as discussed in detail in Section 6.8, providing evidence 
that the model has learned meaningful command patterns rather than 
overfitting to noise.

8. Scalability and industrial applicability

This section analyzes the scalability of our Bi-LSTM-based approach 
for G-code attack detection in larger-scale applications. It is essential 
to highlight that 3D printing typically follows a ‘‘slice-once, print-
later’’ pipeline. G-code generation and analysis occur before the actual 
printing process begins. Given that our approach is designed as of-
fline (pre-print) detection of G-code attacks, it eliminates real-time 
processing constraints and makes computational time less critical than 
accuracy. This early-stage detection of G-code manipulations also offers 
the significant benefit of preventing material waste and machine time 
loss.

Furthermore, at the data level, G-code files are systematically di-
vided into layers, each treated as an independent bag within the MIL 
context. Our methodology is a layer-wise classification, allowing incre-
mental analysis of G-code files by processing the layers independently 
rather than processing the entire file at once. This approach enhances 
computational efficiency and aligns well with both small-scale and 
industrial settings. At the model level, Bi-LSTM employs a selective 
attention mechanism that focuses on the most relevant segments within 
the G-code layers while maintaining a minimal three-layer architecture 
that balances performance with computational complexity. This design 
also enables efficient batch processing for layer-level analysis, maxi-
mizing computational resource utilization through parallel processing 
capabilities.
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To illustrate the practical scalability of our methodology, we con-
ducted an empirical performance analysis utilizing a face shield head-
band manufacturing case study, encompassing a dataset of 1935 layers. 
Our experimental measurements demonstrate efficient processing met-
rics. Utilizing GPU acceleration (NVIDIA A100), the system achieved 
an average inference latency of 0.0434 s per layer, requiring approx-
imately 9.331 s for processing an entire G-code file comprising 215 
layers while maintaining an average memory consumption of 0.59 MB. 
In contrast, CPU-based processing (Intel Xeon had an average inference 
latency of 1.5949 s per layer, requiring approximately 5.715 min to 
process a complete file.

The industrial applicability of our approach is further demonstrated 
through a scaled manufacturing scenario involving 100 Ultimaker 3 
printers producing 1000 headbands. In this context, each printer re-
quires approximately 23.3 h as a printing time of 10 files. Detection 
of malicious modifications post-printing initiation could result in sig-
nificant resource wastage, including material costs for 1000 headbands 
and operational expenses for 100 printers. Conversely, before printing 
starts, our approach can process all 1000 files in approximately 3 h 
(9.331 s ×1000 files) on a single GPU (NVIDIA A100) node, demon-
strating efficient resource utilization relative to potential losses from 
compromised design printing.

This comparison demonstrates that the processing overhead of 
our approach is reasonable and practically manageable in industrial 
settings, providing an efficient solution for pre-print detection of G-
code attacks in real-world manufacturing scenarios. Future research 
directions could explore additional optimization strategies to further 
enhance performance in large-scale deployments. Given our layer-
independent processing approach, distributed computing architectures 
could enable parallel analysis of multiple G-code files simultaneously 
across GPU nodes, potentially reducing the total processing time.

9. Limitations

Our proposed approach may face challenges with detecting mi-
nor changes in the geometry of the design represented by X and 
Y coordinates [10,15]. The varying X and Y parameters within and 
across layers complicate the establishment of an anomaly baseline, 
making it difficult to detect such changes. Addressing these issues may 
require comparing G-code with ground truth and real-time monitor-
ing to reconstruct G-code and identify discrepancies. Furthermore, for 
simplicity, we assumed that each layer or command is impacted by a 
single attack. However, in practice, layers can be affected by multiple 
attacks simultaneously. Different labeling strategies can be employed 
to address this. Composite Labeling represents specific combinations of 
attacks, with each label corresponding to a unique set of two or more 
attack types. Multi-Labeling, on the other hand, assigns multiple labels 
to each layer or command to reflect various attack types. Additionally, 
the ML model needs to be continuously updated as new types of G-
code attacks emerge. While our method is effective in detecting known 
attacks, it may not be able to identify novel attack patterns that were 
not present in the training data.

10. Conclusion

This paper presents a novel approach for early detection of G-code 
attacks in 3D printing, thereby saving both time and resources. Our 
method leverages machine learning techniques to distinguish accu-
rately between benign and potentially malicious manipulations caused 
by these attacks. It provides insights into the nature of such modifica-
tions without requiring a reference model. Several research challenges 
were addressed, including generating an efficient G-code dataset with 
optimal characteristics, extracting informative features, optimally seg-
menting and labeling G-code files, and determining the appropriate 
ML classification technique. Our approach involved generating and 
analyzing diverse G-code datasets with varying 3D designs and slicing 
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parameters. A formal analysis identified the most informative fea-
tures, including command type and number, movement distance and 
direction angle of the print head, filament amount, thermodynamic 
settings, Z-parameter value, and layer characteristics. The Bi-LSTM 
model, enhanced by an attention mechanism and focal loss function, 
was employed for layer classification, while the RF algorithm was used 
for command classification. Both classifiers effectively handled imbal-
anced datasets. Experimental results demonstrated the effectiveness of 
this approach. The Bi-lSTM model achieved F1 scores up to 91.3%, 
while the RF algorithm demonstrated superior performance in detecting 
minor thermodynamic and Z-profile changes at the command level, 
achieving F1 scores between 81.6% and 99.3%. Based on our findings, 
we provided guidelines for analyzing G-code data to facilitate future 
research in this domain.

Future work will focus on building a more comprehensive dataset, 
exploring transformer-based learning techniques to improve perfor-
mance, and real-world deployment of our approach into existing 3D 
printing systems. Additionally, we plan to develop adaptive response 
mechanisms when G-code manipulations are detected. Beyond the 
current approach that discards compromised G-code files, we aim to 
develop automated repair capabilities that could restore manipulated 
G-code to safe configurations based on detected attack types. We also 
plan to investigate selective printing methods that could bypass only 
the compromised layers while executing the unaffected portions of 
the G-code file. Furthermore, developing risk assessment frameworks 
that evaluate the severity and impact of detected manipulations would 
guide appropriate response strategies based on the security implications 
of specific attack types. These enhancements would transform our 
detection system into a comprehensive security framework for additive 
manufacturing workflows, providing not only early warning but also 
actionable remediation strategies.
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