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Abstract—This paper presents WaveSleuth for industrial con-
trol systems (ICS), a novel intrusion detection system (IDS) that
leverages the volatile memory of controller devices, transforming
it into audio signals to detect cyberattacks. Attackers target pro-
grammable logic controllers (PLCs) in ICS to sabotage underly-
ing physical processes; their attack footprints are often present in
PLC memory, which WaveSleuth utilizes to detect a compromised
PLC. Since PLCs are proprietary and heterogeneous, analyzing
their device memory at a semantic level is challenging and does
not scale. WaveSleuth models a PLC device memory as lossless
audio signals at the byte level and deploys audio fingerprinting to
detect anomalies with high confidence without requiring semantic
knowledge of the data structures and firmware in the memory.
Specifically, it periodically extracts volatile memory from a PLC
device, converts the acquired raw memory data into audio signals,
and then extracts a set of features called Mel-frequency cepstral
coefficients (MFCCs) to measure the dynamic time warping
(DTW) distance between two consecutive memory snapshots.
WaveSleuth uses a distance threshold to determine whether
the most recently acquired memory snapshot has been altered
unexpectedly. We evaluate WaveSleuth on four real-world control
logic and device firmware attacks on an actual PLC used in
industrial settings to control a laboratory-scale, fully functional
four-floor elevator. We also benchmark WaveSleuth with a state-
of-the-art solution, PEM, which requires semantic knowledge
to analyze PLC memory contents. Our evaluation results show
that the attacks modify different PLC memory regions, such
as firmware jump table and I/O data; WaveSleuth outperforms
PEM and detects all attacks successfully.

Index Terms—Cyber-physical systems, industrial control sys-
tems, programmable logic controllers

I. INTRODUCTION

Industrial control systems (ICS) are integral to various crit-
ical infrastructures, automating industrial physical processes
such as nuclear and power generation plants, oil and gas
pipelines, and transportation systems [1], [2]. Physical pro-
cesses are located at field sites and are directly controlled
by programmable logic controllers (PLCs). The control center
runs ICS services such as HMI, historian, and engineering
workstations that receive and utilize data on physical processes
from PLCs for remote monitoring and maintenance. PLCs are
embedded devices equipped with control logic programs that
define how a physical process is controlled [3].

Attackers typically target a PLC’s control logic to sabotage
a physical process, using different techniques such as frag-
mentation and noise padding, return-oriented programming,
data execution, and redundant address pins (RAP) attacks, etc

[4]–[14]. For example, RAP [10] is used to stealthily attach
a small piece of programmable code (PMC) to a PLC control
logic; PMC then starts running as part of a control logic scan
cycle and is used to obfuscate and transfer control logic code
from an attacker machine to a target PLC. These network-
based stealthy attacks leave their footprints in a compromised
PLC memory, which can be leveraged for detection. The
challenge is to model and analyze the PLC memory contents.
Limited work in PLC memory analysis mostly requires se-
mantic knowledge of device memory specific to a PLC make
and model, making it challenging to scale to heterogeneous
proprietary devices. [15]–[22].

In this paper, we present WaveSleuth, a novel intrusion de-
tection system for PLCs that models device volatile memory as
audio signals and further employs audio fingerprinting to de-
tect anomalies and raise alerts. By converting memory contents
into audio signals, WaveSleuth takes advantage of audio signal
analysis, a well-established field of study. WaveSleuth works
as follows: It periodically acquires memory contents from a
target PLC, transforms them into audio signals at the byte
level without requiring semantic knowledge of PLC memory
contents, and then extracts features from audio signals since
there are many distinctive extractable features; WaveSleuth
uses the Mel-frequency cepstrum coefficient (MFCC) [23].
MFCC is one of the most widely used audio signal features in
various fields such as acoustic, medical, and industrial analysis
to detect changes [24]. Given that MFCCs encapsulate the
fundamental structure of the spectral envelope, they serve
as an effective means to capture distinctive patterns and
inherent attributes within signals, enabling the extraction of
integral insights into both the current state and the operational
intricacies of the PLC memory. Once WaveSleuth extracts the
MFCCs from the audio signals of the memory snapshots, it
measures the similarity between the signals by calculating the
dynamic time warping (DTW) distance between consecutive
memory snapshots [25]. This meticulous analysis determines
the integrity of the latest memory snapshot, effectively dis-
cerning whether any unauthorized tampering has occurred.

We demonstrate that WaveSleuth works well in practice
by subjecting it to a comprehensive evaluation using a fully
operational physical process designed to emulate a four-
floor elevator system. Throughout this assessment, we execute
four distinct attacks tailored to target five different regions



within the volatile memory of the PLC, inducing alterations
therein. The attack footprints vary in size, starting at 4 bytes,
which is the size of an address pointer, and goes up to 660
bytes, as in the case of altering the entire control logic. We
also benchmark closely related work, PEM [17]. Our results
indicate that, unlike PEM, WaveSleuth can accurately identify
all these attacks on PLCs, even those with minimal footprints.
Additionally, we perform rigorous stress tests on memory
modifications to illustrate WaveSleuth’s detection capability.
Our evaluation results show that WaveSleuth is proficient in
swiftly discerning unusual deviations between two consecutive
memory snapshots.

The contributions of this work are summarized as follows:
1) Device-Agnostic Anomaly Detection: Traditional

anomaly detection in PLCs often requires deep knowl-
edge of specific device configurations. This work
presents a novel, device-agnostic methodology for de-
tecting unauthorized modifications in PLC volatile mem-
ory. It leverages zero-semantic knowledge, allowing
WaveSleuth to readily deploy across various PLC mod-
els without requiring model-specific customization.

2) Enhanced Detection of Low-Footprint Attacks:
WaveSleuth can uncover evidence of sophisticated at-
tacks that attempt to leave minimal footprints. This high-
fidelity attack detection capability significantly improves
the IDS’s ability to identify and respond to the most
subtle intrusion attempts.

3) Rigorous Stress Testing for Robustness: To ensure the
reliability and effectiveness of WaveSleuth in real-world
deployments, we have subjected it to a comprehensive
stress testing methodology to manipulate a PLC memory
at different scales and detect changes. This rigorous test-
ing process guarantees robustness under various attack
footprints in a PLC memory, fostering trust in its ability
to perform effectively in practice.

II. MOTIVATION AND PROBLEM STATEMENT

Motivation. Critical infrastructure such as power generation,
water treatment, and transportation are constantly targeted by
cyber-attacks all over the world. In December 2015, the world
witnessed the first known power outage caused by a malicious
cyber-attack. Three utility companies in Ukraine were hit
by BlackEnergy malware, leaving hundreds of thousands of
homes without electricity for six hours [26]. The German
Federal Office for Information Security reported in 2014, that
a German steel mill suffered major damage after a cyber-
attack forced the shutdown of a furnace, where the attackers
used social engineering techniques to gain control of the blast
furnace systems [27].

The legacy of the Colonial Pipeline incident is often called
into question over a straightforward distinction: Russian ran-
somware hackers didn’t shut down the pipeline themselves;
Colonial did [28]–[32]. They did it as a precautionary measure
because they were unsure about the extent of the attack and
whether it could spread to their physical and industrial control
systems, causing even more damage. This raises the question

of whether there is a way to identify the size and impact of
an attack without shutting everything down.
Problem Statement. Given an ICS environment, our goal is
to identify the compromised PLC devices at any given time. In
case of a cyberattack, this will allow asset owners/operators to
estimate the scale of the attack by determining the total number
of compromised devices, the impacted region (subnets) of
ICS, and the exact devices that are compromised and need
immediate attention for recovery.

III. ATTACK MODEL

Attacker Capabilities. The attacker gains access to the
ICS control center through common methods such as social
engineering (e.g., phishing emails) or introducing malicious
USB drives. This reflects real-world attacks like TRITON [33]
and the Ukraine Power Grid attack [34]. The attacker can also
target supply chain vulnerabilities to access critical compo-
nents or software within the ICS environment. Additionally,
they can exploit weaknesses in remote access protocols for
field devices to establish a foothold within the ICS.
Attacker Knowledge Acquisition. The attacker acquires a
replica of the PLC make and model before launching the
attack on a real system. This allows for developing and
testing exploits tailored to the specific PLC’s firmware and
communication protocols. If detailed specifications for the ICS
protocols are not publicly available, the attacker may employ
tools such as PREE [35] to reverse-engineer them. This
enables crafting exploits that target vulnerabilities within com-
munication mechanisms. The attacker also knows the memory
map of the target PLC to identify code and data sections.
This information may be obtained from datasheets/manuals or
through techniques such as JTAG-based memory acquisition
[36].
Attacker Goals and Techniques. The primary objective of
the adversary is to launch a covert attack on ICS physical
processes. Stealth is prioritized to evade detection by network-
based intrusion detection systems (IDS) monitoring the ICS
network traffic. Consequently, the attacker develops exploits
for the targeted PLC to compromise control logic. Addition-
ally, the attacker may attempt to disable or bypass the IDS
through various means. This might involve data flooding to
overwhelm the IDS, exploiting vulnerabilities within the IDS
itself, or manipulating sensor data to mask malicious activity.

IV. WAVESLEUTH SYSTEM DESIGN

This research proposes an integrated IDS and triaging
framework titled WaveSleuth that leverages retrospective PLC
volatile memory analysis using audio fingerprinting. As shown
in Figure 1, WaveSleuth comprises four main modules.

• Memory Acquisition: This module acquires a snapshot
of an active PLC memory, providing critical data for
intrusion detection and triaging in an ICS network.

• Pre-processing and Feature Extraction: This module
pre-processes the raw memory (from binary form) into
audio signals for efficient and effective processing and
then extracts the most distinct and deterministic features



from the audio signals to be used as an input for the
anomaly detection algorithm.

• Similarity Measuring: This is the anomaly detection
module that compares features from two audio signals
(representing two memory instances) to determine if
changes in the PLC runtime state have occurred.

• Memory Signal Detection: This final module is critical
in determining whether a newly acquired memory snap-
shot is compromised, compared to a historic memory
snapshot. This indicates a potential malicious activity or
abnormal functionality of the target PLC.

Fig. 1: WaveSleuth Framework

A. Memory Acquisition

A PLC’s runtime memory provides a comprehensive snap-
shot of the system’s current state, including control logic, I/O
data, firmware data structures, and controller configurations.
Leveraging a snapshot of a PLC memory can help detect
indicators of compromise (IoCs), such as malicious control
logic code, unauthorized firmware patching, and abnormal
control behaviors that might not leave traces on a PLC device’s
volatile memory. In our proposed integrated framework, this
real-time memory acquisition enables immediate identification
and response to threats, facilitating rapid triage and minimiz-
ing the impact of an attack. We focus on runtime context,
specifically memory snapshots for anomaly detection rather
than network traffic analysis, primarily because:

• Unlike mobile devices or traditional computers, PLCs
are task-specific. This uniqueness in functionality means
that the same code set will execute continually over time
except where an update is made. Thus, it is safe to assume
PLCs maintain specific memory patterns over time.

• Network intrusion detection techniques are increasingly
insufficient for detecting control and data-oriented attacks
and other attacks designed to circumvent network-based
IDSs such as CrashOverride and TRISIS [6], [37], [38].

• Modern attacks can leave no evidence on non-volatile
storage, making it challenging for non-runtime-based
IDSs or triaging tools to detect incidents [39].

From related literature, substantial research has addressed
two main challenges in PLC memory acquisition. The first
challenge is acquiring the entire PLC memory for comprehen-
sive analysis, which cannot be achieved using only network
protocol-based approaches [16], [40], [41]. The second chal-
lenge is finding a non-intrusive way to remotely acquire the

entire PLC memory instead of using hardware-level debugging
ports such as JTAG [36], which require physical proximity
for disassembling a suspect PLC or power cycling. To address
these challenges, PEM is a state-of-the-art memory acquisition
framework to remotely acquire a PLC memory while it con-
trols a physical process [17]. Our memory extractor module
can leverage PEM or other PLC memory acquisition methods
to enhance memory acquisition capabilities.

A PLC memory typically consists of protocol-mapped, i.e.,
readable over the network, and non-protocol-mapped memory
spaces. Accessing the non-protocol-mapped memory can be
challenging as it cannot be acquired directly via ICS protocols.
To address this issue, PEM enables access to the non-protocol-
mapped memory by appending a harmless duplicator code
to the control logic [17]. This code copies the non-protocol-
mapped memory space to the protocol-mapped memory space,
which can then be accessed using the ICS network protocol.
The original control logic of the PLC runs before the appended
duplicator; therefore, the PLC can still control its underlying
physical process during memory acquisition. Leveraging PEM
for the integrated framework, the entire memory of a PLC,
including regions such as external RAM, peripheral I/O, and
on-chip RAM (in-memory firmware), can be acquired through
an ICS network protocol. WaveSleuth incorporates PEM to
periodically extract memory snapshots from PLCs to compare
their new and historical images.

B. Preprocessing and Feature Extraction

This module consists of two sub-modules to pre-process a
memory dump and extract features afterwards.

1) Preprocessing: The extracted PLC memory images are
in a binary unstructured format, making their analysis chal-
lenging, often requiring specialized tools and expert knowl-
edge in memory forensics and reverse engineering. Therefore,
a methodology that is easy to use and operates with minimal
semantic knowledge is essential to streamline this complex
and time-consuming analysis process. Thus, given raw binary
data without any semantic information, preprocessing can be
done in two ways: processing the binary data using techniques
such as byte frequency or n-gram analysis or transforming
the binary data into another representation such as an im-
age or audio signal. Our proposed approach favored audio
encoding over direct binary analysis because audio encoding
can highlight subtle features and variations in the data that
might be missed in traditional binary analysis, such as n-gram.
Additionally, audio encoding allows for applying sophisticated
signal processing techniques for analyzing complex data pat-
terns, making it a robust method for detecting anomalies in the
acquired memory snapshot in our integrated IDS and triage
framework.

Therefore, we encode the raw memory bytes into sound
wave signals in this module using a lossless transformation
algorithm for efficient and effective processing. The goal of
lossless data-to-signal encoding is to ensure that the original
data can be accurately recovered from the encoded signal
without any loss of information, meaning the decoded data



is identical to the original data. The memory snapshot of
an active process is temporal, with different memory regions
(configuration block, data block, code block, etc.) exhibiting
varying frequencies.

We start our audio signal generation process by inputting the
memory dump, in the form of a binary file, into WaveSleuth.
WaveSleuth parses the binary file, creating a byte stream,
which is then converted into a Waveform Audio File Format
(WAV) at a sampling rate of 48,000 Hz. This approach
allows us to leverage advanced audio processing techniques
to analyze the memory data, facilitating the identification of
patterns and anomalies that might be missed in traditional
binary analysis. Sampling refers to the process of converting
an analog signal into a discrete time signal containing a
sequence of samples. We opted for this specific sampling
rate based on the Nyquist-Shannon sampling theorem, which
stipulates that our sampling frequency must be at least twice
the maximum frequency present in the signal [42]. Given that
frequency in this context pertains to the auditory qualities of
loudness or pitch, its values are inherently variable. Since the
human auditory spectrum spans approximately from 20 Hz to
20,000 Hz, adherence to the theorem mandates a sampling rate
surpassing 40,000 Hz to reproduce the sound wave signal in
an audio format. As our goal is to extract the MFCCs from
each sound wave signal, we use the minimum sampling rate
of 48,000 Hz.

Subsequently, the values within the byte stream are in-
terpreted as a sequence of amplitude values corresponding
to the sound wave. This interpretation entails mapping the
byte stream values to the potential amplitudes inherent in the
waveform. Typically, these amplitudes range from 0 to 255 or
are expressed bipolarly as -1 to 1. This transformation yields
amplitude values accurately depicting the waveform’s intensity
at various points along its timeline.

This transformation process is iteratively applied to all
memory instances, ensuring that each instance is converted
into its corresponding sound wave representation. These rep-
resentations are the foundation for our subsequent analyses
and evaluations. To verify that our transformation algorithm is
fully lossless, we plot a 100-byte sample of a memory dump
onto a graph, showing the decimal value of each byte between
0 and 255. We then convert the memory sample into its audio
waveform, with the amplitude value of each byte ranging from
0 to 255. Figure 2 demonstrates the transformation is 100%
lossless, with the original binary sequence retaining identical
values and patterns to the audio waveform..

2) Feature Extraction: In signal processing, mathematical
techniques are often applied to extract specific characteristics
unique to each signal. These deterministic attributes, also
called domain features, are consistent across all similar signals
and divergent in dissimilar signals; therefore, they can be
used to identify distinguishable unique patterns, trends, or
anomalies. Various domain features exist in audio signals, such
as time, frequency, cepstral, and discrete wavelet transform do-
main features [43]. One commonly used audio analysis feature
for effective audio analysis is MFCCs, a matrix of cepstral

Fig. 2: Lossless Transformation from Binary data to Audio
Waveform data

domain features. MFCCs are the coefficients that make up
the mel-frequency spectrum. Cepstral features are frequency-
smoothed representations of the log magnitude spectrum and
capture timbral characteristics and pitch. The information on
the rate of change in spectral bands of a signal is given by
its cepstrum [44]. For the integrated framework, WaveSleuth
leverages the MFCCs extracted from the encoded audio signals
as the data points for anomaly detection measures.

Traditionally, sound wave signals are transitioned from the
time domain to the frequency domain by applying the Discrete
Fourier Transform (DFT). However, an inherent limitation of
this approach lies in its propensity to yield a representation that
reflects the averaged frequency components present throughout
the signal’s entire duration. In essence, it provides an overview
of which frequency components exist within the system but
fails to provide precise temporal details regarding when these
frequencies rise or fall. To circumvent this limitation, we
leverage the capabilities of the Librosa audio analysis package
for extracting MFCCs from each individual sound wave signal.
Librosa employs a Short-Time Fourier transform (STFT) in
spectrogram operations [45]. This approach enables us to
obtain a more granular and informative representation of the
sound wave’s frequency content over time, which is crucial
for the integrated IDS and triaging process.

The structure of the MFCC features extracted from a sound
wave signal takes the form of a matrix composed of nested
arrays, each containing numerical values. These values encode
the rate of change across distinct spectral bands within the sig-
nal, providing a comprehensive representation of the spectral
characteristics of the signal, particularly its tonal content and
distribution across the frequency spectrum. Specifically, when
applied to the original memory snapshot, the MFCCs represent
the rate of change of bytes across different memory regions.
This memory-encoded audio signal representation identifies
patterns and anomalies within the memory, highlighting areas
of unusual activity or potential compromise. By transforming
memory data into this new feature space, we can employ
binary diffing techniques on the MFCCs matrix values to
detect intrusion and cyber incidents more effectively.

The following summarizes the steps involved in the prepro-
cessing of a PLC raw memory data until it is transformed into



a sound wave signal and the mathematical functions [46] that
extract the MFCCs from the audio signal:

1) Raw Memory to Sound Wave Signal:
• Acquire a raw memory snapshot, typically named
Memn.bin.

• Convert the binary file into a byte array object for
easier manipulation and processing.

• Further convert the byte array into a Numpy array
object to facilitate mathematical operations.

• Encode the Numpy array as a sound wave signal,
transforming the memory data into an audio format.

2) Fast Fourier Transform (FFT): Apply the Fast Fourier
Transform to the sound wave signal to convert it from
the time domain to the frequency domain, revealing the
signal’s frequency components.

3) Log-Amplitude Spectrum: Convert the amplitude spec-
trum obtained from the FFT into a log amplitude spec-
trum to compress the dynamic range.

4) Mel Scaling: Map the frequencies to the Mel scale
using:

Mel(f) = 2595× log(1 +
f

700
)

This step adjusts the frequency representation to apply
the Discrete Cosine Transform in the next step.

5) Discrete Cosine Transform (DCT): Apply the Dis-
crete Cosine Transform to the log amplitude Mel-scaled
spectrum to decorrelate the features and compact the
information into the first few coefficients.

C(x(t)) = F−1(log(F [x(t)]))

6) Mel Frequency Cepstral Coefficients (MFCCs): Ex-
tract the resulting coefficients from the DCT, known as
Mel Frequency Cepstral Coefficients (MFCCs), which
effectively capture the essential features of the signal.
Compute the MFCCs using the librosa library in
Python:

mfcc1 = librosa.feature.mfcc(y1, sr1)

C. Similarity Measure

Following the extraction of MFCCs, the next step in-
volves evaluating if two MFCCs are similar, i.e. if they
are extracted from the same memory-encoded audio signal.
In traditional similarity-matching algorithms, various distance
measures such as Euclidean distance, Cosine similarity, Auto-
correlation, and others are commonly employed to assess the
similarity between feature vectors, such as MFCCs. These
similarity measurement formulas differ according to the types
of objects being compared. For example, cosine similarity
measures the similarity between two non-zero vectors [47],
Euclidean and Manhattan distance measure the similarity
between two data points [48], Hamming distance measures the
similarity between two strings [49]. However, there’s a crucial
consideration here: These algorithms are typically optimized
for scenarios where input sequences are synchronized at both
time and speed. Given that the extracted MFCC features

exhibit variations in both time and speed, relying solely on the
Euclidean distance or similar metrics may not yield accurate
similarity scores. Moreover, the unique interplay of spectral
energies, which can be concentrated or sporadic over time,
further introduces temporal differences into the traces. These
spectral energies correspond to different memory segments or
regions, adding complexity to the analysis. Due to this inherent
asynchronicity in the resulting sequences, it becomes crucial
to leverage techniques such as DTW [50] for quantifying
similarity between them.

DTW is a technique used to measure the similarity between
temporal or two-time series sequences that may have differ-
ences in timing, speed, and length, i.e. not fully aligned [25],
[50], [51]. It is often used in speech and audio recognition,
gesture recognition, and pattern recognition and works by
comparing two-time series sequences and warping one of the
sequences to align with the other sequence to obtain an optimal
alignment. The warping process adjusts the timing and scaling
of the sequence to match the other sequence as closely as
possible. The DTW algorithm first creates a matrix represent-
ing the distance between each point in the two sequences.
The algorithm then finds the optimal path through this matrix,
which corresponds to the minimum distance between the two
sequences. The optimal path is determined by minimizing the
total cost of all the cells in the matrix along a path that
moves diagonally, horizontally, or vertically. DTW has several
advantages over other techniques used for comparing time
series data. One of the main advantages is that it can handle
sequences of different lengths and variable time scales making
it useful for analyzing memory-encoded signals of different
sizes. It is also able to align sequences with non-linear warping
functions, making it useful for analyzing complex patterns and
signals. Additionally, DTW accommodates variations in the
temporal alignment of sequences, which makes it particularly
well-suited for comparing MFCC features that exhibit time
and speed discrepancies, enabling more accurate and reliable
similarity assessments in the context of memory analysis.
Therefore, WaveSleuth calculates the DTW distance between
the two memory instances. It is important to note that the
DTW distances, when applied in the context of memory-based
anomaly detection, provide insight into the variability of the
system’s behavior over time. Smaller distances suggest the
behavior is relatively consistent, while larger distances suggest
more variability.

D. Anomaly Detection

Once we’ve extracted the MFCCs and calculated the DTW
distances between two memory images, a baseline memory im-
age, and a DTW threshold must be determined to ascertain if
a target device’s runtime activity has deviated from its normal
pattern of activity. This critical step is essential for detecting
intrusions and forensics triaging after a cyber incident.

Generally, there are many techniques for determining the
threshold for an anomaly detection algorithm, such as selecting
the Max, Min, or Median of all known benign distances. Other
techniques, such as clustering, distance to nearest neighbors,



Fig. 3: Fully-functional Four-floor Elevator Testbed

etc, have also existed in the literature [52]–[54]. For our
purposes, we used the most conservative approach: the Max of
all known DTW distances between benign images. Although
this approach may result in a threshold that is too high, it
is guaranteed to ensure that all observed variations in normal
behavior are accounted for, thereby reducing the risk of false
positives. This trade-off is particularly crucial for physical
processes with many states, which can result in variable DTW
distances. Additionally, considering our features are based on
runtime characteristics (memory), most known PLC attacks
are likely to exceed the normal activity threshold. Therefore,
this conservative approach effectively balances the need for
thorough anomaly detection while minimizing the likelihood
of flagging normal behavior as anomalous.

Thus; to find the optimal threshold (x):
x = MAX(dt0, dt1, ..., dtn)

To detect anomaly:
If(dtn <= x) → memn is benign
else → memn is anomalous
Where d is the DTW between memn and baseline image

memb

V. EXPERIMENTAL SETUP

This section provides a brief overview of the experimental
setup used to evaluate the effectiveness of WaveSleuth.

As shown in Figure 3, we designed a testbed using a
Modicon TM221CE16R version 1.6 PLC connected to an
elevator model. This testbed implements control logic for an
elevator that travels between floors 1, 2, and 3, with each action
representing a separate time instance. We used EcoStruxure
Machine Expert - Basic software, a programming tool for
M221 controllers, to build the control logic. Additionally, we
utilized an older version of the PLC (Modicon TM221CE16R
version 1.5) to exploit the vulnerabilities patched in the newer
version for our evaluation.

In the context of the elevator system, we developed a testing
framework that comprises three distinct states of operation to
simulate various scenarios and potential real-world conditions.
State 1 (Power Cycling): In this initial state, we cycle the
power of the PLC by turning it off and then on between
different tests. This scenario mimics scenarios where the PLC

undergoes complete power interruptions and restarts.
State 2 (Controller Restart): In the second state, we main-
tained continuous power to the PLC but introduced controlled
disruptions. Specifically, we halted the controller’s operation
and subsequently resumed it remotely from the engineering
software. This state’s setup is designed to emulate situations
where the controller experiences controlled stoppages and
restarts while the system remains powered.
State 3 (Continuous Operation): In the third state, we main-
tained continuous, uninterrupted operation of the PLC with-
out any deliberate interventions or disruptions. This scenario
represented a stable, ongoing system operation. Each state
comprises a series of specific scenarios, each characterized by
a unique time instance denoted as (tn), representing the action
and position of the elevator at the time of memory acquisition.

VI. EVALUATION

To evaluate the effectiveness of WaveSleuth, we developed
three sets of experiments that map three important hypotheses
and the core contribution of this research. These experiments
are:

1) E1: The effectiveness of the proposed system in detect-
ing and/or triaging real attacks on PLCs, even those with
small footprints.

2) E2: The robustness and efficacy of leveraging DTW
compared to other distance measures, such as hamming
distance, in determining changes to MFCCs.

3) E3: The resiliency of the proposed device-agnostic
methodology, which utilizes features from memory-
encoded sound signals to detect alterations.

A. (E1) WaveSleuth effectiveness to detect PLC attacks
with varying memory footprints

The attacks on PLCs may have small memory footprints
that raise questions about the effectiveness of WaveSleuth’s
threshold approach. This section evaluates WaveSleuth in
detecting real PLC attacks with different memory footprints on
a compromised PLC device. It further compares WaveSleuth’s
performance in detecting these attacks with PEM, a state-of-
the-art related work [17].

1) Establishing Baseline and Threshold: Wavesleuth uses
the following five steps to establish a threshold:

• Initial Acquisition: Acquire the external RAM image at
a designated time instance tn.

• Baseline Setting: Set this image as a baseline memb .
• Subsequent Capture and Comparison: Repeat the ini-

tial acquisition at tn+1, then compare the new image with
the baseline image using DTW distance.

• Iteration: Alternate between normal operation states, re-
peating steps 1 to 3 until a specified number of iterations
m is achieved. For our experiments, we acquired 51 be-
nign memory images in the three states, each constituting
different actions. Each memory is compared with the
preceding one, and a DTW distance is established.



• Threshold Setting and Deployment: The detection
threshold for the PLC is set based on the max of all
the DTWs before deploying the PLC.

Figure 4a shows what an unmodified (benign) PLC memory
pattern looks like in State 1, where we systematically cycle
the power of the PLC between each instance. Figure 4b
demonstrates a benign pattern in State 2, where we maintain
continuous power to the PLC but introduce controlled disrup-
tions by stopping and restarting the controller remotely from
the engineering software. Figure 4c shows a benign pattern in
State 3, where the PLC is in continuous operation without any
disruptions to simulate a stable, ongoing PLC operation.

It is important to note that a new threshold must be estab-
lished for each PLC and control logic whenever an update or
configuration change occurs to prevent any unusual but normal
activity from being flagged as a malicious activity, resulting in
false positives. This is done by repeating the 5-step installation
process explained above. As noted in this process, the last step
involves establishing a threshold. As discussed in Section IV,
we chose to use the maximum DTW distance as the threshold.
In our current example, the highest DTW distance value is
1272.00. Consequently, whenever we acquire a new memory
snapshot (memn), we measure the DTW distance (d) between
the new memory snapshot and the baseline (historical) memory
snapshot.

With the threshold established, to detect an anomaly in the
PLC, for each new memory image memn, compute its DTW
distance (d) to the last baseline memb. Compare the DTW
distance against the threshold (x). If the distance exceeds the
threshold, flag it as malicious and alert the HMI; otherwise,
set this new memory image memn as the new baseline memb

and wait for the next image.
2) Detecting Real PLC Attacks using the Threshold: Us-

ing our designed testbed, we executed four different real-world
attack scenarios targeting various memory regions. These
attacks simulate situations where malicious control logic is
executed to emulate potential security breaches or unautho-
rized intrusions. Specifically, these attacks target PLC control
logic, firmware, and user authentication. After launching each
attack, we acquired the memory images generated by these
malicious actions. These new images now contain the altered
or compromised states of the elevator system post-attack. For
each one of the four attack scenarios, we discuss a graph
showing patterns that the memory exhibited at different time
instances both for pre- and post-attack instances (t0 to tn),
illustrating the pre-attack threshold.

Additionally, in Table I we summarize all four attack
footprints, including the regions of memory modified by the
attack and the scale of the modification.

Data Execution, Fragmentation, and Noise Padding
(DEF&NP) Attack. We evaluated Yoo et al.’s control logic
injection attacks, focusing on data execution, fragmentation,
and noise padding techniques [5]. In this scenario, the attacker
aims to disrupt physical processes by injecting malicious
control logic into a PLC. In the data execution attack, PLCs

TABLE I: Memory Footprints for the Four PLC Attacks

Attack Affected Region Change Size in Bytes

DEF&NP
Configuration Block

Data Block

4 bytes (Pointer)

660 bytes (Control Logic)

Control Logic Injection Code Block 660 bytes (Control Logic)

Direct Firmware Object Manipulation
Code Block

Free Space (in Ext RAM)

11 bytes appended to Control Logic

21 bytes

Password Reset Ext RAM, right after ZIP 2000 bytes

lacking data execution prevention (DEP) measures enable
attackers to manipulate data blocks, executing any memory
block for malicious activities. The attacker gradually transfers
the malicious control logic to the PLC’s data blocks through
periodic I/O data reading by the HMI, then redirects the
control flow to execute the injected logic using pointers,
such as the one in an M221 PLC’s configuration block.
The fragmentation and noise padding attack capitalizes on
the limitations of techniques such as Deep Packet Inspection
(DPI), evading detection with small-sized payload packets
containing fragmented control logic and added noise. Yoo et
al. combine these attacks effectively, dividing control logic
into ‘N’ fragments and sending each fragment in a different
packet with appended noise. Each subsequent write request
overwrites a byte of noise from the previous stage, ensuring
stealthy consecutive writing of the control logic byte by byte
in the data block until completion. This results in the elevator
skipping the second floor while keeping the door open as
it travels between different floors. The first entry in Table I
illustrates the DE&NP attack footprint in the memory, where
the configuration block contains a 4-byte pointer altered to
point to the data block, which holds 660 bytes of injected
control logic.

Figure 5a compares six unmodified (benign) memory snap-
shots taken pre-attack and one malicious memory snapshot
taken post-attack. We started our experiment by downloading
our benign control logic from our PC to the PLC and resetting
the PLC. While the elevator remained at its resting state on
floor 1, we acquired our first unmodified memory snapshot
(t0). Then, we called the elevator to the second floor and
acquired our second memory snapshot (t1). To observe how
normal operation changes the PLC memory, we calculated the
normal DTW distance between two consecutive normal states
of the elevator. We processed the memory snapshots through
WaveSleuth, converting them into two different audio signals
and measuring their similarity, resulting in a DTW distance of
1263.14.

We then moved the elevator back and forth between dif-
ferent floors to emulate a real-life scenario, acquiring a new
memory snapshot after each action and comparing it to the pre-
vious snapshot. Following the same procedure, we calculated
the DTW distance between each pair of consecutive memory
snapshots (tn) and (tn−1), yielding different DTW distances.
The green line between t1 and t6 in Figure 5a demonstrates
these benign changes and their effect on the PLC memory, as
illustrated by the DTW distances between each consecutive
memory images.
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Fig. 4: Benign DTW distance changes over time between power cycles, controller restarts, or continuous operation.

(a) DEF&NP (b) Control Logic Attack (c) DFOM Attack (d) Password Reset Attack

Fig. 5: Benign Memory (Green) followed by an attack (Red). The horizontal line represents the threshold.

Next, we introduced the DEF&NP attack and measured the
DTW distance between our most recent benign memory snap-
shot (baseline) (t6) and the new malicious memory snapshot
(t7). The DTW distance between (t6) and (t7), represented by
the red line, jumps to 1758.95, demonstrating a much larger
difference between benign and malicious memory snapshots
compared to the smaller differences between consecutive
benign snapshots. Thus, this larger DTW compared to our
threshold of 1272.00, set up in the testbed design for this PLC,
shows that our proposed methodology can effectively detect a
DEF&NP attack even with changes of only about 664 bytes
(less than 1KB).

Control Logic Injection Attack. In this scenario, the attacker
aims to gain unauthorized access to the engineering software
that interacts with the PLC, in this case, the SoMachine Basic.
This can be achieved by social engineering, where the attacker
targets personnel with access to SoMachine Basic. Phishing
emails with malicious attachments or links can trick users into
downloading malware that compromises their workstations.
Once inside the network, the attacker can exploit legitimate
access to SoMachine Basic to download the malicious control
logic to the PLC. Another way to obtain access to SoMachine
Basic is through a Watering Hole attack, where the attacker
identifies websites frequented by personnel using SoMachine
Basic. They compromise these websites to inject malicious
code that exploits vulnerabilities in SoMachine Basic when
users visit the site. This could be a drive-by download attack
where the user unknowingly downloads malware that provides
access to SoMachine Basic. We simulate this attack by down-
loading the malicious control logic in the previous attack to the
PLC. We then acquire pre- and post-attack memory snapshots,
as explained previously, and measure the DTW distances.

Figure 5b shows that the highest DTW distance observed
during normal operation was 1262.14. Meanwhile, the DTW
distance between a normal and a malicious memory snapshot

increased to 1810.27, above the 1272.00 established threshold.
The attack map in Table I shows the footprint of this attack
in the code block, where 660 bytes of malicious control logic
replaced the original control logic.
Direct Firmware Object Manipulation (DFOM) Attack.
DFOM is a method of attacking a firmware data structure
by targeting a specific firmware function. For example, in
the case of our M221 PLC, a jump table containing the
addresses of built-in firmware functions such as timers and
counters is maintained to be used by the control logic. DFOM
attacks the control logic by modifying the jump table to target
a specific function. It achieves this by changing the jump
table to redirect the timer function responsible for opening
the elevator door after a 3-second delay to a malicious timer
function that disables the delay, causing the door to open
before the elevator reaches its destination. First, DFOM injects
a malicious payload for the timer into the free space of the
external RAM region of the PLC, and then it modifies the
jump table with the address of the malicious timer code.

Figure 5c shows the same approach we followed in the
previous attacks. Again, we start by resetting our PLC to
remove any artifacts left from the previous attack. Our benign
changes due to regular operation result in a maximum DTW
distance of 1215.72. On the other hand, once we introduce the
DFOM attack at (t7), the DTW distance jumps up to 2415.55.
Table I shows the footprints left in the memory, which are 11
bytes appended to the control logic in the code block to update
the ’Call Handler’ to redirect to the 21-byte malicious timer
that was injected into the free space of the external RAM.

While DFOM attacks in PLCs, in general, are stealthy and
persistent [55], [56] and often with a very minimal footprint
(total of 32 bytes changes) as shown in Table I, nonetheless,
our proposed approach was able to effectively detect these
memory changes and flag this DTW distance as anomalous.
Password Reset Attack. Lastly, we set up an attack that
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Fig. 6: Password reset attack in Modicon PLC

changes the external RAM in the region following the ZIP
region. The ZIP region contains a compressed XML file with
metadata about the control logic. PLCs rely on password-based
authentication to protect control logic against unauthorized
access. For this experiment, we utilized Kalle et al.’s [6]
password reset attack on the M221 PLC. The authentication
protocol comprises four messages, starting with an authentica-
tion request from the engineering software. The PLC responds
with a one-byte key (m1). The next message includes a random
one-byte value (m2) and an encoded SHA-256 password hash.
The PLC then responds with an error code (success or failure).

Figure 6(a) illustrates the password reset attack used in
our approach, while Figure 6(b) displays the PLC’s memory
layout. The password hash resides in the memory region
0xd000 to 0xe000, but its exact location is variable due
to varying ZIP file sizes.

The attack operates as follows: it initiates a request for
m1 and receives a response from the PLC. Subsequently, it
iteratively sends write requests with a SHA-256 password hash
of the attacker’s password, beginning from memory location
0xdfe0 (as the password hash is 32 bytes in size). After each
write request, it follows up with an authentication request and
repeats the process until authentication succeeds.

Figure 5d shows our evaluation of WaveSleuth’s ability to
detect this password authentication attack. For this evaluation,
we ran our experiment on a Modicon TM221CE16R version
1.5 PLC that executed the same elevator control logic de-
scribed earlier. The reason for using this specific version is that
the password authentication vulnerability no longer exists in
version 1.6. Because we are using a different PLC version, we
need to establish a new baseline and threshold. We started by
capturing 9 baseline normal memory snapshots (t0 - t8) to find
the new threshold at 624.83. We then executed the password
authentication attack and captured the malicious memory (t9).
WaveSleuth compared the latest two memory dumps (t8) and
(t9) and found the DTW distance between them to be 9956.79,
much higher than the established threshold. The reason for
such a high DTW distance can be attributed to the size of this
attack’s footprint, approximately 2000 bytes, in Table I.

3) Benchmarking with Related Work: In this section, we
compare Wavesleuth with PEM [17], a memory-based detec-
tion technique. Like WaveSleuth, PEM operates by comparing
memory states before and after an attack. PEM analysis show
that it is able to detect the DFOM attack effectively. However,
it can not detect other attacks, as it only perceives them as
memory changes without being able to tell whether they are

malicious changes or not. Table II compares the detection
effectiveness of Wavesleuth and PEM. As shown, Wavesleuth
successfully detects all four attacks, while PEM is only able
to identify one. This limitation in PEM arises from its reliance
on semantic knowledge specific to each attack for detection.

TABLE II: Comparison with the related work PEM

Attack WaveSleuth PEM
DEF&NP ✓ ✗
Control Logic Injection ✓ ✗
Direct Firmware Object Manipulation ✓ ✓
Password Reset ✓ ✗

Summary Findings: From the discussion of the four attacks,
our results indicate that WaveSleuth can detect (1) various
different attacks, (2) attacks with very minimal footprints,
and (3) stealthy and persistent attacks, irrespective of the
region where the payload is placed, and (4) can perform better
than a state-of-the-art solution, PEM. Collectively, considering
our statistics for comparing benign (7 for DEF&NP, 7 for
CL INJECT, 7 for DFOM, and 9 for PSWD RESET) and ma-
licious (1 for DEF&NP, 1 for CL INJECT, 1 for DFOM, and 1
for PSWD RESET) images against the threshold, WaveSleuth
accurately detects all the attacks, unlike PEM.

B. (E2) Robustness and efficacy of DTW compared to
other distance measures, e.g., hamming distance, to de-
termine changes to MFCCs.

As discussed in Section IV, DTW distance is not the only
measure applicable for finding differences and similarities
in MFCCs. Other distance measures, such as Cosine and
Hamming distance, could also be applied. In this experiment,
we compare the results of applying Hamming distance to those
four attacks set in E1 against DTW distance. The results, as
shown in Figure 7, demonstrate that DTW performs well for all
four attacks and is sensitive to even small normal operational
changes. In contrast, Hamming distance is not sensitive to
operational changes and failed to detect the memory changes
of the DFOM attack. This clearly indicates that the choice of
DTW improves the robustness and efficacy of WaveSleuth in
detecting different types of PLC attacks while being resilient
to normal operations.
Summary Findings: WaveSleuth DTW algorithm is robust
in detecting different PLC attacks compared to other distance
measures, such as Hamming distance.

C. (E3) WaveSleuth resiliency in utilizing features from
memory-encoded sound signals to detect alterations.

In this last experiment, we conducted rigorous stress tests
to further evaluate WaveSleuth’s resiliency to memory alter-
ations. To this end, we employ a bit-wise XOR manipula-
tion technique using the mask ’FF’ to examine the seven
distinct regions within our baseline memory image. These
changes were made directly to the acquired memory before
the memory-to-audio transformation. The testing process is
initiated by modifying the first 4 bytes of the memory dump.
This alteration corresponds to the size of an address pointer



Fig. 7: Hamming (dotted line) vs. DTW (solid line) Distances
between Memory Snapshots before and after Attacks

within a Modicon M221 PLC memory. For each region under
examination, we continue the alteration by shifting our 4-
byte alteration window sequentially until we traverse the entire
extent of that region. Subsequently, we increase the alteration
size by doubling the number of bytes, progressing from 4-
byte alterations to 8, 16, 32, etc., and eventually reaching
512-byte alterations. Following this, we calculate the DTW
distance between the baseline memory dump and each of the
successively altered memory dumps.

Fig. 8: The Average DTWs for the 7 Memory Regions after
XOR alterations compared to the Baseline Memory Image

Figure 8 shows the effect of the alterations on the average
DTWs of each of the 7 different memory regions compared to
the baseline memory dumps (i.e., before alterations). We notice
that the average DTWs calculated for the control logic, data,
and configuration blocks that are located in the external RAM,
as well the I/O region that is located outside of the external
RAM, increase as the number of altered bytes increases from
4 bytes to 512 bytes. While the average DTW distances
for almost all regions tend to increase with the increase in
byte changes, certain regions, like the ZIP region with high
entropy, remain unaffected by these alterations. Notably, the
ZIP region achieved a high entropy score of 7.95 on a scale
of 10. However, high-entropy regions need to be large to
be unaffected by small alterations. Since they are simple to
identify in memory, a separate threshold can be established
for high-entropy regions to improve detection.

Additionally, in rare instances, our experiments showed a
dip in the I/O region with more changes. The reason for that
is that the high presence of ’00’ bytes in certain memory
regions affects DTW distances when XOR-ed with ’FF’. This
transformation causes original and XOR-ed bytes to mirror
each other, reducing the distance between them. Regions with
more ’00’ bytes exhibit lower DTW distances, reflecting their
sensitivity to changes. This makes it difficult for attackers to
alter specific memory values to execute effective attacks.
Summary Findings: WaveSleuth is resilient in detecting
changes in memory regions. However, its performance may
degrade in large regions with high entropy leading to false
negatives, but is overcome by establishing separate thresholds
for such regions.

VII. RELATED WORK

This section presents related work on PLC memory analysis.
Cook et al. introduce PLCPrint [18], a vendor-independent
fingerprinting method that maps PLC registers to memory
artifacts and detects memory attacks based on these mappings.
Haris et al. focus on forensic analysis of Allen-Bradley Con-
trolLogix PLCs, identifying key artifacts in memory dumps
using specific string and data searches, and providing a Python
library for this analysis [19].

Awad et al. perform memory forensics on the Schneider
Electric Modicon M221 PLC by reverse engineering the
communication protocol, creating a memory profile to assist
in faster analysis during cyber incidents [15].

Yoo et al. develop “Shade,” a shadow memory technique
that observes network traffic to maintain a local copy of PLC
memory and analyzes it with a classification algorithm [16].
Caselli et al. propose S-IDS, a sequence-aware intrusion de-
tection system, to detect semantic attacks exploiting permitted
operation sequences in ICS [57].

WaveSleuth can monitor and detect unusual PLC memory
alterations periodically, complementing existing approaches
focused on post-incident forensic analysis.

VIII. CONCLUSION

WaveSleuth is an integrated intrusion detection and triaging
system designed to address cyber threats in PLC environments,
which are increasingly vulnerable due to the evolving inte-
gration with modern IT infrastructures. The system works by
converting complex binary data from PLC runtime activities
into audio signals to improve the detection of compromised
PLCs. Since WaveSleuth requires zero-semantic knowledge,
it can work on heterogeneous PLC devices, enhancing its
adaptability. The extensive evaluation and memory stress test-
ing shows that WaveSleuth outperforms PEM, a state-of-the-
art solution, and can accurately detect attack anomalies in
PLC device memory. From a practical standpoint, WaveSleuth
adds to defense in depth and complements network-based IDS
to find compromised PLCs at the edge. Considering PLCs
are resource-constrained devices, WaveSleuth should be used
periodically or in case of intrusion alerts or network incidents
to ensure the controllers are not compromised.
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