
Charlie, Charlie, Charlie on Industrial Control Systems: PLC
Control Logic Attacks by Design, Not by Chance

Adeen Ayub
Virginia Commonwealth University

Richmond, VA
ayuba2@vcu.edu

Wooyeon Jo
Virginia Commonwealth University

Richmond, VA
jow@vcu.edu

Irfan Ahmed
Virginia Commonwealth University

Richmond, VA
iahmed3@vcu.edu

Abstract—Programmable logic controllers (PLCs) in industrial
control systems (ICS) run a control logic program to monitor and
control critical infrastructures in real-time, such as nuclear plants
and power grids. Attackers target PLC control logic remotely
to sabotage or disrupt physical processes. Network intrusion
detection systems (IDS) are increasingly used to detect malicious
control logic. This paper demonstrates that standard IDS features
in a protocol message header and payload are not resilient for
detecting (control logic) binary programs, such as entropy, n-
gram, and decompilation. It identifies and utilizes a PLC design
feature, redundant address pins (RAP), unexplored in the litera-
ture, to bypass IDS for injecting a small piece of programmable
malicious code (PMC) into a PLC’s control logic as an initial
attack vector, allowing it to execute with every scan cycle. We
propose three unique attack methods (GizmoSplit, BuffWarp,
and EnigmaFlow) using PMC as a proof of concept that blends
control logic with network traffic via payload encoding, small-
size payloads, or sparse memory addressing. The GizmoSplit
attack divides the control logic into small gadgets and writes
them in random memory locations in a PLC; PMC modifies the
stack with the location of the gadgets to execute them as return-
oriented programming. The BuffWarp attack employs a small-
size buffer where the attacker writes malicious code periodically
to bypass stateful inspection at the payload level; PMC, in turn,
keeps moving the buffer content to consecutive memory locations
to execute. The EnigmaFlow attack encodes control logic and
sends it to a PLC’s typically unused memory region, which
PMC decodes and executes. The evaluation results indicate that
these attacks are stealthy and can subvert IDS utilizing standard
message header and payload features. This work points to a
research gap in intrusion detection that caters to control logic
attacks exploiting PLC design features.

Index Terms—industrial control systems, programmable logic
controllers, ICS attacks, control logic, intrusion detection systems

I. Introduction

Industrial control systems (ICS) control and monitor physi-
cal processes in critical infrastructures such as nuclear plants,
power grids, and oil and gas pipelines. They consist of control
centers and field sites (shown in Figure 1). The control center
runs ICS services such as historian, human-machine interface
(HMI), and engineering workstation. Physical processes are lo-
cated at field sites that include programmable logic controllers
(PLC), sensors, and actuators. PLCs are directly connected to
physical processes and equipped with control logic programs
that define how the physical processes are controlled and
monitored. Attackers target PLCs’ control logic to disrupt

HMI
Engineering
Workstation

Historian
Control Server

(MTU) PLC PLC PLC

Field SiteControl Center

ICS LAN Physical process (gas pipeline, power grid)

I/O I/OI/O

Fig. 1: Overview of an industrial control system

physical processes [1]–[5]. Intrusion detection systems (IDS)
are increasingly used to detect any transfer of malicious
control logic over the network [6]–[11]. They use standard
features in message headers and payloads for control logic
detection, such as entropy, n-gram, and decompilation.

In this paper, we demonstrate that IDS based on these
features are not resilient to detect control logic in ICS network
traffic and are subject to subversion by exploiting PLC design
features. Specifically, we identify and utilize Redundant Ad-
dress Pins (RAP) in PLCs as an exploitable feature unexplored
in the literature. Many PLCs use RAP to optimize the number
of address pins to manage their addressable memory locations,
such as Schneider Electric’s M221 and M241 and Allen-
Bradley’s 1756-L61 ControlLogix. We empirically find that
RAP leads to multiple address locations appearing to have
the same content because they point to the same underlying
physical memory addresses. Thus, attackers can use RAP to
achieve address randomization in ICS protocols, which is
useful to subvert stateful deep packet inspection (DPI) [12].

As an initial attack vector, we leverage RAP to remotely
insert a small programmable malicious code (PMC) into a
PLC’s control logic, allowing it to execute with every scan
cycle. It involves splitting the code into small (undetectable)
parts and putting them into separate PLC memory spaces that
seem unconnected. However, the result is a complete program
neatly written in a single continuous address space.

PMC allows attackers to create stealthy control logic trans-
fer methods that bypass IDS monitoring. We propose three
unique attack methods, i.e., GizmoSplit, BuffWarp, and Enig-
maFlow, as proof of concept that blends control logic with
network traffic via payload encoding, small-size payloads, or
sparse memory addressing.

The GizmoSplit (segmented control logic injection) attack
segments a malicious control logic program into gadgets
(instruction sequences ending with ‘return’) and places these

gadgets randomly in memory. It then uses PMC to modify
the stack with the addresses of these gadgets to run the
control logic program in the correct sequence as return-
oriented programming. Finally, the program’s control flow is
changed to run PMC instead of the original control logic.

The BuffWarp (buffered control logic injection) attack di-
vides control logic into segments and repeatedly overwrites
them in a designated buffer in the PLC. With each update,
PMC copies the buffer contents to free memory space, incre-
menting the address by the buffer size. Once the entire control
logic is written, the program’s control flow shifts to the new
region containing consecutive malicious control logic.

The EnigmaFlow (mutated control logic injection) attack
mutates/encodes malicious control logic before writing it to
free memory block in a PLC. PMC subsequently decodes and
replaces it chunk by chunk. Finally, the attack redirects the
program’s control flow to the new malicious control logic
instead of the original version.

We thoroughly evaluate the proposed attack methods to de-
termine their efficacy in bypassing IDS. Our results show that
GizmoSplit and BuffWarp can successfully bypass most of the
detection features, such as n-gram, instructions, decompilation,
and protocol header, while EnigmaFlow can evade detection
features, such as decompilation and n-gram.

This paper makes the following contributions:
• We identify RAP as an exploitable feature in a typical

PLC design. It can cause address randomization in ICS
protocols to subvert stateful deep packet inspection while
inserting small malicious code in a PLC’s single contin-
uous address space. The current ICS literature does not
discuss RAP from a cybersecurity standpoint.

• We show that RAP with ICS protocols can append PMC
in a PLC’s control logic without detection. We further
leverage PMC and propose three stealthy control logic
injection attacks as a proof of concept.

• We successfully demonstrate the proposed attacks’ impact
on a laboratory-scale fully functional elevator.

• We evaluate the effectiveness of RAP and PMC-based
attacks against standard intrusion detection features. We
show that the attacks are stealthy and challenging for
existing IDS, pointing out a research gap in intrusion
detection for ICS.

The rest of this paper is organized as follows. Section II
discusses existing control logic attacks. Section III gives the
motivation behind our work. Section IV outlines the attack
model and stages of our attacks followed by three proof-
of-concept attacks in Section V. Section VI discusses the
testbed and the attack implementation steps. Section VII and
Section VIII present evaluation results and attack mitigation
strategies, followed by the conclusion in Section IX.

II. Related work
This section discusses existing control logic injection at-

tacks; none leverages RAP.
Yoo et al. [12] demonstrate two effective control logic

injection techniques: data execution and fragmentation with

noise padding. Data execution exploits PLCs’ lack of data
execution prevention (DEP), executing malicious logic from
data blocks. Fragmentation with noise padding sends logic
in small chunks with added noise to bypass Deep Packet
Inspection (DPI).

Govil et al. [13] introduced “ladder logic bombs," which
attackers can implant into a PLC’s existing control logic.
These bombs are challenging to manually detect by control
engineers verifying PLC control logic. They can be activated
by trigger signals to disrupt operations or persistently harm
physical processes over time.

Senthivel et al. [14] introduced three Denial of Engineering
Operations (DEO) attack scenarios, where an attacker disrupts
the downloading/uploading of PLC control logic. In DEO I,
the attacker, as a man-in-the-middle, injects malicious logic
during uploading, then reverts it to normal to fool engineering
software. DEO II employs a similar strategy but uploads
flawed logic to crash the software. DEO III doesn’t need a
man-in-the-middle; the attacker injects intricate, flawed logic
that runs on the PLC but can’t be decompiled by the software.

Zubair et al. [15] propose a novel attack, Denial of Decom-
pilation (DoDe), which manipulates engineering software’s
decompilation process. The attack involves crafting malicious
control logic mirroring legitimate software’s choices to hinder
digital forensics and incident response.

Alsabbagh et al. [16] introduce a control logic injection
attack, which empowers external adversaries to inject their
malicious code into vulnerable PLCs. This enables them to
maintain their attack dormant within the compromised device
and subsequently activate it at a later time, even without being
connected to the target on the day of the attack.

Ayub et al. [17] show return-oriented programming attacks
on PLCs, leveraging gadgets from the PLC memory to manip-
ulate existing control logic and create new malicious control
logic. Despite not transmitting malicious code to the PLC,
these attacks face limitations due to the scarcity of gadgets in
memory for constructing meaningful malicious control logic.

III. Motivation and Problem statement

Control logic attacks on PLCs replace legitimate control
logic with malicious ones to disrupt the underlying physical
process. Since they transfer control logic over the network,
IDS can detect them. State-of-the-art stealthy attacks subvert
deep packet inspection (DPI) of individual packets. For in-
stance, fragmentation and noise padding attack [12] transfers
small fragments (one byte) of control logic in each packet and
adds noise data in the packet payload, making it challenging
for DPI to detect. However, stateful inspection can still detect
these attacks using standard IDS features such as n-gram [6].

Problem statement. Given an IDS that can detect a control
logic from the network traffic, an attacker’s goal is to craft a
control logic injection method that can subvert individual and
stateful DPI using standard IDS detection features.

Memory
acquisition

Analyze
memory map

Identify
target RAP

JTAG Protocol
(FNC,
Read)

EW PLC

Download
capability

1
2
3
4
5
6
7
8

Pin no

PMC

CL

GizmoSplit

BufferWarp

EnigmaFlow
Free
space

PLC

PMC
Witch crafting

malicious control
logic that evades
detection by IDS

PMC enables
successful
execution of
the attackIDS

Conf
ptr

CL

0 1

Attacker

2
2a

2b

2c

Initiation stage Witchcraft stage

Fig. 2: Stealthy control logic injection attacks using redundant address pins (RAP) and programmable malicious code (PMC)

IV. Stealthy Control Logic Injection Attacks

Figure 2 provides an overview of our proposed stealthy
control logic attack consisting of two main stages: 1) Initiation
stage utilizes RAP (a common PLC design feature to optimize
ICS protocol addressing) to install PMC in a target PLC’s
control logic secretly; 2) the witchcraft stage involves crafting
and sending a new malicious control logic to the PLC that can
evade IDS features for deep packet inspection. We propose
three control logic crafting methods using PMC for this stage:
GizmoSplit, BuffWarp, and EnigmaFlow (refer to Section V).

A. Attack Model

Assumptions. Our adversary model assumes that the attacker
has access to the control center of an ICS. In practice, this
access is achieved through typical attack methods in our IT
world, such as introducing a malicious USB stick and social
engineering as demonstrated by real-world ICS attacks like
TRITON [5] and the Ukraine Power Grid attack [18]. This
level of access enables the attacker to establish communication
with the targeted PLC over the network using an ICS protocol.

We assume the attacker acquires the PLC device of the
target make and model before launching the attack on a real
ICS environment. It allows for developing and testing the
exploit, including reverse-engineering relevant ICS protocols
if their specifications are not publically available. They may
employ tools like PREE for automated PLC protocol reverse
engineering [19]. Furthermore, the attacker understands the
memory map of the target PLC to identify code and data
sections. This map can originate from datasheets/manuals or
be generated using JTAG-based PLC memory acquisition [7]
if needed details are lacking.

We also assume the adversary will not compromise the IDS
monitoring the ICS network traffic between field devices and
the control center.
Attacker’s goal. The primary objective of the adversary is to
covertly attack ICS physical processes, prioritizing stealth to
evade detection by the network-based IDS.

B. Initiation Stage

Block 0 shows everything that an attacker does at her own
end and not in the actual target environment. She can acquire
the memory via protocol or JTAG and generate a memory map

of the PLC to understand the different memory regions of the
PLC. She then also identifies the different address pins that
can be used to acquire the same memory region. Given an
attacker’s goal is to sabotage a physical process and yet not
be detected by an IDS, she wants to send the control logic to
the targeted PLC in a stealthy manner rather than using the
traditional control logic injection techniques [5], [12], [20]
that involve transmitting control logic through the network [5],
[12], [20]. These attacks are easily detectable by IDS that
are based on features such as entropy, n-gram, decompilation,
source code, and machine instructions. One way an attacker
can evade such detection features is to mutate or encrypt the
control logic before sending it to the PLC. Such mutations,
however, lead to a challenge, i.e., guaranteeing the effective
activation of the attack at the device level, which in this case
would be its decryption in order for it to run properly.

PLCs have certain design features that can be exploited by
attackers to achieve their goals.

1) Download Capability: Block 1 shows PLCs have a
download capability, which means writing a control logic
program on it. They provide programming software for en-
gineers to perform this task. PLCs operate in two modes: 1)
Program mode, where the underlying physical process stops
for new program downloads, and 2) Run mode, where the
physical process starts to operate but the download operations
are halted. While the engineering software does not allow
download operation when the PLC is in run mode, write
operations via the protocol are still allowed. This vulnerability
allows an attacker to inject malicious control logic into the
PLC without having to change the PLC’s mode of operation.

2) Scan cycle: PLCs control physical processes by taking
input from sensors, processing it via logic, and producing
output for actuators. This occurs in a scan cycle. This feature,
along with the download capability, allows an attacker to
perform any operation using code injection at the device level
(such as firmware object or stack manipulation, and volatile
memory acquisition [8], [17]). In order to make sure the
injected code runs successfully, it must be appended to the
existing control logic so it runs as part of the control logic in
every scan cycle. We call this appended code programmable
malicious code (PMC).

3) Redundant Address Pins: While the attacker now has a
way of successfully executing the mutated control logic using
code injection at the device level, it leads to another challenge,
i.e., sending the required code for executing the previously
transmitted malicious control logic. Given the attacker’s aim
to remain undetected, her intention is to ensure this code goes
unnoticed as well.

Our analysis of PLCs’ memories from various vendors
revealed the presence of aliased memory regions. Usually,
intended memory aliasing is caused when multiple virtual ad-
dresses are aligned to the same physical addresses for a certain
purpose. However, in the context of PLCs, this aliasing arises
due to a distinct phenomenon: the disregard of specific address
bits. This unique form of aliasing, which we call “Redundant
Address Pins" (RAP), is attributed to the optimization of the
number of address pins used to manage small-sized memory in
PLCs. This design feature, while might be efficient and easy,
leads to multiple address locations appearing to have the same
content, even though they all point to the same underlying
physical memory. Such a phenomenon is observed in various
PLCs, including Schneider Electric’s M221 and M241, and
Allen-Bradley’s 1756-L61 [7].

In Figure 2, Block 1 illustrates how the attacker ex-
ploits RAP to inject PMC into the PLC. The key insight
here is that because pins 1 - 5 are unspecified, addresses
like “00000111," “00001111," “00011111," “00111111,"
“01111111," and “11111111" all point to the same memory
region. In this case, it’s the specific location targeted for PMC,
which is “00000111." This method capitalizes on the fact
that not all memory address spaces physically exist due to
redundant address pins.

RAP lets the attacker insert code by splitting it into pieces
and putting them into separate memory spaces that seem
unconnected. However, the end result is a complete program
neatly written in a single continuous address space. It’s im-
portant to note that with RAP, the attacker can bypass stateful
DPI that tracks memory addresses in ICS protocols. Conse-
quently, the attacker can write to the code block (“00000111")
using diverse address ranges, but network traffic indicates that
different memory regions in PLCs have been updated.

The randomization of protocol addresses and the transfer
of small pieces of code over the network can subvert stateful
DPI, which is useful for launching an initial stealthy attack
vector. We leverage RAP to append a small-size PMC to PLC’s
control logic. Appending to the control logic ensures that PMC
is run as part of the existing control logic, acting as an enabler
for the next stage of the attack [8], [17].

C. Witchcraft Stage

In this phase, the attacker, playing the role of a crafty witch,
develops a clever method to send harmful control code to the
PLC (as shown in Block B of Figure 2). She ensures that her
method avoids detection by the IDS. Once the control code
is sent, the attached PMC, added during the initiation stage,
ensures the malicious control code runs smoothly. Lastly,
she alters the program’s flow from the original logic to the

TABLE I: Standard network intrusion detection features

Study Common Detection Features
F1

Prot. Header
F2

Entropy
F3

N-gram
F4

Decomp.
F5

Instr.
McPAD [21] ✓ ✓
POSEIDON [22] ✓ ✓
Anagram [23] ✓
Shade [6] ✓ ✓ ✓ ✓
Chang [24] ✓
ICSREF [25] ✓ ✓ ✓
PLC-READER [26] ✓
SCRUTINIZER [27] ✓ ✓
Zonouz [28] ✓ ✓
Zhou [29] ✓ ✓
Serhane [30] ✓
Valentine [31] ✓ ✓
Klick [32] ✓ ✓
Hui [33], [34] ✓ ✓
Schuett [35] ✓ ✓
ACCM [36] ✓
Balikcioglu [37] ✓
Yang [38] ✓
McLaughlin [39] ✓

malicious one. PMC allows various ways to transmit the
control code secretly and ensures they are all executed on
the PLC. In the next section, we demonstrate three methods
to create this control logic, i.e., 1) GizmoSplit, 2) BuffWarp,
and 3) EnigmaFlow.

V. Witchcraft Stage Attacks
This section showcases three distinct attack techniques as

proof of concept for the witchcraft stage to subvert standard
intrusion detection features. However, more attacks are possi-
ble via PMC to subvert IDS features not discussed here.

A. Standard Intrusion Detection Features

We outline common detection features based on fundamen-
tal characteristics of detection techniques (Table I). Since our
attacks occur over the network and aim to inject malicious
control logic, these recommended features are primarily de-
rived from network packet inspection and binary analysis.
Protocol Header (F1). The protocol header feature focuses
on analyzing the header information in network packets. It’s
crucial for extracting payload data and conducting further
detection. Network-based code injection attacks and detection
often require analyzing protocol headers. [14], [20], [40]–[44].
Entropy (F2). Entropy measures data randomness, posing
challenges for attackers due to the difficulty in mimicking
genuine entropy patterns [21], [23], [45]. It plays a crucial
role in detecting and countering code injection attacks by
evaluating data randomness levels.
N-gram (F3). An N-gram is a contiguous sequence of ‘n’
items from a text and is used in binary-based anomaly de-
tection [46]. Pairing N-grams with techniques like Bloom fil-
ters [6], [23], [47] or Self-Organizing Maps (SOM) [22], [48]
enhances their efficacy. Bloom filters capture unique n-grams
from write request message payloads, particularly those with
control logic code. Two derived features from these bloom
filters include the total count of unique n-grams (#NGram)
and the longest consecutive n-gram sequence (LNGram).
Decompilation (F4). The decompilation feature focuses on the
process of converting compiled machine code into a higher-
level programming language. It counts the total number of
bytes that can be successfully decompiled.

Instructions (F5). This feature comprises byte sequences that
translate into machine instructions, such as opcodes, and,
specifically in PLCs, both rungs and opcode [14]. In PLC con-
trol programs, ladder logic contains rungs, each representing a
specific set of control instructions. Opcodes, on the other hand,
signify low-level instructions executed by the PLC processor.
By matching these opcodes to their respective instruction list
(IL) instructions, we can grasp the control logic’s behavior.
This feature quantifies the total count of detected rungs and
opcodes in the binary.

B. GizmoSplit Attack

A control logic binary code is made up of a series of
instructions that must be executed sequentially for it to operate
successfully. For this reason, it is always written consecutively
in the PLC memory, whether by a legitimate user or an
attacker [2], [12], [20]. Yoo et al. [12] demonstrate control
logic injection attacks that add significant noise to the attack
payload while keeping the size of the control logic signifi-
cantly small to subvert DPI techniques. However, these attacks
can be detected by stateful IDS, which create a virtual PLC
memory using the address fields in the protocol header of
write request messages, rather than relying solely on individual
packet payloads [6]. GizmoSplit is resilient against such IDS.

𝑆0 𝑆1 𝑆2

𝑆3 …
Control

Logic

PMC

Conf. block
Address
of code
block

0 1

2
31

2

3

Malicious control
logic

Attacker

PLC

Addr of S0

Addr of S1

Addr of S2

Addr of S3

Stack

Fig. 3: GizmoSplit attack
Attack Flow. Figure 3 shows the complete flow of the attack.
It splits a malicious control logic program into different seg-
ments(such as s0, s1), with each segment being a sequence of
instructions that end with a ‘return’ instruction. Hence, we can
say that each segment is a gadget [49]. The attack then places
each gadget in a random memory location. And then finally, to
execute each gadget, the attack appends PMC to the existing
control logic using RAP, which is designed to activate various
gadgets located at random memory locations in a specific se-
quential order, similar to return-oriented programming. This is
achieved by modifying the stack with addresses corresponding
to the control logic segments or gadgets positioned across
different memory locations. The objective is to ensure the
control logic code executes in the desired sequence.

Subsequently, the pointer responsible for indicating the start
of the control logic is altered to point to the beginning of PMC
instead. By doing so, the original control logic is effectively
bypassed and replaced with the malicious version.
Detection features bypassed. The attack bypasses the proto-
col header feature (F1) since the address in the write request
message cannot be used to create a virtual memory to detect
control logic. It is to be noted that the segments can be of
varying size but small enough so as not to be identified as

code using the different features that are used in IDS. For
instance, the size of a segment should be shorter than an
instruction that can be identified as a rung(F5). The attack also
bypasses higher-order n-gram. Moreover, since the attack splits
the control logic into segments, the entropy (F2) of individual
segments is very low.

C. BuffWarp Attack

Buffwarp attack involves the use of a small buffer located
at a specific memory address to inject chunks of control
logic repeatedly until the entire control logic code is written.
Similar to GizmoSplit, this attack cleverly evades IDS systems
that establish virtual memory by scrutinizing write requests
from network packets [6]. However, the attack’s repetitive
overwriting of a specific region thwarts such IDS efforts.

𝒎𝟎

𝑀 = ෍

𝑘=0

𝑛

𝑚𝑘

𝑚𝑘/𝑡𝑠𝑐 Address of
code block

Conf. block

0 1 2 3

4 5 6 7

2

3

1

PMC

Control
logicAttacker Malicious

control logic

Fig. 4: BuffWarp attack

Attack Flow. Figure 4 shows the flow of the BuffWarp attack.
It initiates by obtaining a copy of the malicious control logic
‘M’, which is divided into segments of size N. The attacker
then transmits these control logic segments to the buffer,
overwriting its contents. Each segment(mk) should be sent
per scan time (tsc) of the control logic of the PLC. Each
transmission includes a valid bit that indicates whether the data
in the buffer is valid. The inclusion of sending a valid bit with
every transmission, along with making sure that each segment
is sent per scan time(time taken by a PLC to complete one
cycle of processing its program logic) is necessary for PMC’s
success since it ensures that the contents of the buffer are
copied only when it is updated.

In this attack, PMC continually monitors the buffer’s valid
bit to determine if the buffer has been updated. When the bit
is valid, PMC copies the buffer contents to another memory
location. If the bit is invalid, no copying occurs. As each
segment is written in one scan time, the process guarantees
that no packets are missed. The copied buffer contents are
then sequentially written to a new memory location to ensure
the complete transfer of the control logic.

Finally, the attacker alters the control flow to execute the
malicious control logic from the new memory location.
Detection features bypassed. Similar to GizmoSplit, Buf-
fWarp is also resilient against IDS that use protocol header
information (F1) to create a virtual memory because of having
the same address in all the write request messages. Moreover,
since the attack is divided into small chunks, the entropy (F2)
of each chunk would be quite low. The attack also bypasses
higher-order n-gram. Each chunk is also small enough not
to be successfully decompiled to a valid instruction (F4) or
identified as a rung or opcode (F5) from the database.

D. EnigmaFlow Attack

In this attack, an attacker tries to conceal malicious control
logic from an IDS by encoding it to make it difficult to
understand. By encoding the control logic, an IDS is unable
to recognize individual instructions as control logic code with
instructions forming rungs and opcodes. Even if an encoded
instruction is identified as a rung, the probability of the entire
encoded control logic being detected is low.

Control
logic

Mutated
control logic

Attacker 2

1

3

Address of
code block

Conf. block

K =

Malicious
control logic

K
PMC

Fig. 5: EnigmaFlow attack
Attack Flow. Figure 5 depicts the sequential steps of the
attack. Initially, the control logic is encoded using a secret
key, following which the encoded program is transmitted
to the PLC. The encoding technique used depends on the
attacker’s objectives for stealthiness. Alternatively, a more
complex encryption algorithm can enhance evasion from an
IDS, though it may impact real-time control. The appended
PMC extracts the encoded control logic from memory and
decodes it using the same key. The decoding is done chunk
by chunk, overwriting the encoded code with the decoded one.

Once the decoding process is complete, EnigmaFlow
changes the pointer that points to the start of the PLC’s code
block. Instead of pointing to the original code, the pointer now
points to the memory location where the decoded malicious
code is written. As a result, when the PLC executes its control
logic, it will unintentionally run the modified, malicious code
instead of the original control logic.
Detection features bypassed. N-gram (F3) is circumvented
due to the difficulty in locating identical data sequences
between the mutated control logic and the control logic in
the trained attack dataset. Similarly, the mutated control logic
cannot be successfully decompiled to valid instructions (F4),
and hence, it is difficult to detect rung and opcode (F5).

Door open Going
upward

Main
motor

LED
Display

M221 PLC

Door
Motor

Elevator

Between
two floors

Fig. 6: (a) Front view of the elevator model
(b) Malfunctioning elevator under attack

VI. Implementation

A. Testbed

We executed the attacks on Schneider Electric’s Modicon
M221 PLC (firmware v1.5.1.0), equipped with a 32-bit Re-
nesas RX630 microcontroller and connected to a laboratory
scale fully functional elevator (shown in Figure 6(a)). The
four-floor elevator model allows users to input their desired
floors from both inside and outside the elevator. In response,
the elevator moves to the desired floor while the LED lights
show the floor it is on. The elevator door stays closed by
default, opening only upon reaching the desired floor, and
closing a few seconds later. Each input/output port of the PLC
is connected to some elevator component. The engineering
software for crafting malicious control logic is SoMachine
Basic (version 1.5).We developed attack scripts in Python 2.7
and utilized RX Renesas assembly language for PMC. We
employed Unified Messaging Application Services (UMAS)
over Modbus protocol to generate the attack scripts.

B. General implementation steps

The attacker carries out the same steps to run the attacks.
Step 1: Getting compiled control logic code. To execute
a successful attack, an adversary prepares malicious control
logic using engineering software. Once the logic is ready,
they capture network packets during the download process to
an M221 PLC. By analyzing these packets, the attacker can
extract the compiled logic code from payload data within write
request messages using address fields.
Step 2: Analyzing the memory of a PLC. After capturing
and extracting the compiled logic code, the attacker analyzes
the M221 PLC’s memory. This analysis reveals available free
space and identifies regions that share the same content when
a specific pinpoints to a location.
Step 3: Transferring PMC using RAP. The attacker re-
quests to read the PLC’s configuration block, determining the
control logic’s address and size. This information is crucial
for appending PMC. PMC is then appended to the control
logic using RAP. For example, the M221 PLC has RAP
set in the 5(4-8) bits of the total 32(25) regions, similar
to as shown in Figure 2. Due to this RAP configuration,
in the M221’s total 32-bit (4-byte) address space memory,
the following addresses point to the same physical memory
space: 0x701e000, 0x709e000, 0x711e000, 0x719e000, and
so on. If PMC has an 11-byte size and is inserted into this
space one byte at a time, more than 5.15 ∗ 1015 methods
(calculated by 32P11) can be used to insert it into a physically
contiguous address space without using adjacent addresses.
The motivation for appending PMC to existing control logic
is to ensure its successful execution as part of the control logic
during a scan cycle.
Step 4: Preparing the method of transferring the malicious
control logic to the PLC. With the necessary information
about the control logic’s address and size, the attacker can
now transfer the malicious control logic to the target PLC.
There are three primary methods for doing this:

XIC

%I0.3

OTE

%Q0.1

Gadget# assembly

1: btst #3, r12

rts

2: bmc #1, r13

rts

a) Ladder diagram

Gadget 1

Gadget 2

0x7020000

0x70200FF

PLCb) Gadgets being placed in random locations

Fig. 7: Control logic program (that turns on output 1 if input
3 is on) and its gadgets

1- Segmenting the control logic and ending each segment
with a “return" instruction, turning each segment into a gadget.
These segments are then written to random locations in the
PLC’s memory that are free to use. Note that these random
locations should lie outside of the code block, which always
falls between 0x701e000 and 0x701fed4. Figure 7 shows a
simple control logic program (figure 7(a) that is segmented
into multiple gadgets (figure 7(b). The control logic program
turns on a light if a particular switch is triggered. Gadget 1
is written at memory address 0x7020000, and gadget 2 at
0x70200FF. These gadgets are then run with the help of PMC,
which is explained in Step 5.

2- Similar to the first technique, the attacker divides the
control logic into N segments and writes them to a buffer
at a specified memory address (0x7020000). This buffer is
overwritten with each subsequent write request. For our exper-
iments, we used a 4-byte buffer size. Additionally, with each
write request, the attacker writes the value 0x01 to another
memory location (0x701FFEE) to signal that the buffer was
overwritten. This step is crucial for PMC’s success (explained
in Step 5) in copying the buffer contents of the malicious
control logic to a designated area. This ensures that with each
subsequent write request, the contents are not overwritten in
this new area where the control logic is consecutively written.

3- Mutating the entire control logic by encoding it with a
one-byte key (0x02) and writing it consecutively to free space
outside the code block. This encoded control logic, stored at
0x7020000, is later decoded and replaced with the decoded
version using PMC (explained in Step 5).
Step 5: Running the PMC. PMC ensures the activation of
each attack technique for it to run successfully. If the first
technique was used, PMC modifies the stack with gadget
addresses in the sequence forming the prepared malicious
code in step 1. Figure 8 shows the PMC in the RX assembly
language responsible for stack modification. In order to modify
the contents of the stack, we utilize the stack pointer, which
is the R0 register in the case of RX renesas architecture.
However, it is to be noted that modifying the contents that
the current stack pointer value points to may make the PLC
malfunction. Hence, in order to keep the PLC functioning as
normal, we decrement the value of the stack pointer and update
the memory address it points to with the gadget addresses
of the control logic segments written in random memory
locations in Step 4.

For the BuffWarp attack, PMC continually checks whether
the buffer is overwritten. If it was, the contents are copied to
another memory location where the control logic is eventually
written in sequence.

line assembly

1: sub #8, r0

2: mov.l #0x07020000, r2

3: mov.l r2, [r0]

line assembly

4: mov.1 #0x070200FF, r3

5: mov.1 r3, [r0]

6: rts

Fig. 8: PMC for Stack Modification in GizmoSplit attack
line assembly

1: push.1 r1

2: push.1 r8

3: push.1 r5

4: push.1 r10

5: mov.1 #0x7030000, r8

6: mov.1 #0x4000, r10

7: mov.1 #0, r1

8: _top

9: mov.1 [r8], r5

10: xor #2, r5

line assembly

11: mov.1 r5, [r8]

12: add #4, r8

13: add #1, r1

14: cmp r10, r1

15: ble.b _top

16: pop r10

17: pop r8

18: pop r1

19: rts

Fig. 9: PMC decoder for EnigmaFlow attack

For the EnigmaFlow attack, the attacker decodes the
previously encoded entire control logic using an assembly
code decoder shown in Figure 9. Line 5 loads the address
(0x7030000) where the encoded malicious control logic is
stored in register R8, along with the control logic’s size, into
register R10. The loop from lines 8 to 15 executes the decoding
process. Each 4-byte block of the control logic, starting from
the address in register R8, is decoded using an XOR operation
with the key value (0x02). After each XOR operation, the
address register is incremented by 4 (registers can hold 4-byte
values) to move to the next block of encoded data. This loop
continues until the entire control logic is decoded.
Step 6: Changing the control flow. Finally, the attacker
changes the pointer in the configuration block to point to the
new control logic. In the case of BuffWarp and EnigmaFlow,
the attacker changes the pointer to point to the new memory
location where the new control logic is stored. However, in the
case of GizmoSplit, since the segments are located at random
locations, the attacker changes the pointer to point to the start
of the PMC which modifies the stack with addresses of the
attacker-specified gadgets, allowing the malicious control logic
to execute exclusively. Note that due to the alteration in the
control flow, PMC will no longer execute for BuffWarp and
EnigmaFlow attacks. However, this change does not pose a
problem as PMC has already activated the attacks.

VII. Evaluation

This section presents 1) the evaluation metric and results
of witchcraft stage attacks and their resilience against IDS, 2)
the effectiveness of RAP during the initial attack stage, and
3) the impact of the attacks on an elevator, representative of
a real-world physical process.

A. Experimental Settings

We utilized 49 different control logic programs for evalua-
tion targeting various physical processes such as traffic lights,
belt conveyor systems, and elevators; 22 for training IDS to
detect control logic payload in ICS network traffic, and 27 for
evaluating control logic attacks. Each attack utilizes a distinct
method of sending the control logic over the network, resulting
in individual network traffic datasets.

B. Evaluation Metric
This section introduces three key metrics for evaluating

witchcraft-stage attacks. We first explore the difference be-
tween stateful and individual DPI. Following that, we discuss
the employed detection system. Lastly, we introduce a control
logic injection attack from existing literature for comparative
analysis with our proposed attacks.

1) Individual DPI vs. Stateful DPI: We assess each attack
using both individual and stateful DPI. In individual DPI, each
packet is individually tested for control logic code occurrence
in the payload. Although effective against certain control logic
attacks [2], [14], DPI techniques fall short against attacks
that transmit small-sized control logic blended with noise to
seamlessly integrate with normal traffic [12].

To address this challenge, we leverage the Shade approach
in Yoo et al.’s [6] study. Shade integrates DPI with traditional
stateful inspection to detect control logic attacks. Specifically,
it observes the protocol header in each packet, containing a
write request message. Shade utilizes addresses in the protocol
header and the content in the write request message payload
to construct a shadow memory of an underlying PLC. This
shadow memory is then examined to identify the occurrence
of any control logic code.

2) Subversion of Standard IDS Features: We evaluate our
attacks on a network intrusion detection system that uses
classic machine learning algorithms. Employing a two-stage
strategy with Gaussian Naive Bayes (GNB) and Support
Vector Machine (SVM) [50]–[52], our approach involves an
initial one-dimensional GNB classifier evaluating each feature
individually to identify the most discriminative ones for model
creation. The discriminative features play a crucial role in
enhancing the model’s ability to distinguish between different
classes in the binary classification scenario. Subsequently,
SVM is employed to build and assess the detection perfor-
mance of models using these selected features. The goal of
this detection system is to identify if control logic is being
transferred over the network, not to distinguish between mali-
cious and benign logic. In the ICS domain, where control logic
updates are infrequent, any attempt at control logic transfer
should be treated as a potential malicious event. Hence, the
training datasets in the SVM model consist of control logic
programs that are not necessarily malicious.

The detection system incorporates five detection features
(listed in Table I). Features F2-F4, such as entropy, n-gram,
decompilation, and instructions, are utilized for model training,
while Feature F1, the protocol header, serves solely for stateful
inspection and does not contribute to model training. We
use it to employ Shade [6] to form shadow memory for
stateful DPI. Throughout the evaluation, we consistently use
this feature to construct a shadow memory (SM) of the PLC
for comparison between individual and stateful DPI. Note that
these features are used in various detection systems (refer
to Table I), and our approach involves recreating a detection
system that incorporates these features to evaluate our attacks’
resilience. We measure the attack’s resilience by calculating a
detection rate (DR) for each feature. It is calculated as;

DR =
∑

(Total count of detected features in each packet)
Number of packets

In stateful DPI, the total count of a feature in the SM region
is calculated instead of in individual packets.

3) Benchmarking with Related Work: We assess the effec-
tiveness of the attacks by comparing their outcomes with a
referenced attack in the existing literature [12]. The designated
attack, named DEFRAN (Data Execution, Fragmentation, and
Noise padding), combines two established techniques. In data
execution attack, the attacker downloads the control logic code
into the data section of a PLC. This strategic move allows the
attacker to bypass restrictions that typically prohibit writing
directly to the code section of a PLC. The second tech-
nique, Fragmentation and Noise padding, adopts a distinctive
strategy. It systematically fragments the control logic into a
compact size, introduces noise, and iteratively writes the entire
code in incremental steps. The fragmentation process aims to
minimize the size of the control logic, making it challenging
to detect through mechanisms such as deep packet inspection.
DEFRAN is designed to bypass signature-based IDS as well
as DPI techniques. Comparatively, we utilize DEFRAN to
demonstrate that our attacks are stealthier, evading additional
detection systems beyond DEFRAN’s capabilities [6].

C. Witchcraft-stage Evaluation

In this section, we present the evaluation results for the
witchcraft-stage attacks utilizing the previously outlined met-
rics. First, we examine the bypassing of each detection feature,
followed by an aggregation of all features for an overall
assessment as shown in Figure 10. It’s important to note that
the protocol header, utilized in stateful DPI for all features, is
not evaluated separately.
Entropy. Figure 10(a) presents the entropy-based detection
rates for DEFRAN and the proposed attacks. The presented
detection rates in all figures represent the average detection
rate across the 27 control logic programs used for testing.
Notably, EnigmaFlow and DEFRAN consistently demonstrate
high detection rates in both individual and stateful DPI. This
consistency stems from EnigmaFlow’s obfuscation techniques
(with no data loss), preserving entropy values similar to those
in the DEFRAN attack. It’s crucial to emphasize that the de-
tection rate is calculated based on the resemblance of entropy
values to those found in payloads containing control logic
code. However, GizmoSplit and BuffWarp manifest lower
detection rates due to payload segmentation, which alters total
entropy. Segmenting the payload essentially increases overall
entropy, aligning with entropy’s nature to escalate with data
complexity. Consequently, distinct entropy values in attacks
like GizmoSplit and BuffWarp diminish the detection rates.

It is evident that, in both of these attacks, the detection rate
under stateful DPI is lower than that of individual DPI. This
occurs because both GizmoSplit and BuffWarp are designed
to trick detection systems that create an SM. Consequently,
each write request (with a control logic segment) is treated

0%

20%

40%

60%

80%

100%

DFR EF GS BW

Individual DPI
Stateful DPI

Entropy

D
et

ec
ti

o
n

 r
at

e

(a) Entropy

0%

20%

40%

60%

80%

100%

DFR EF GS BW

Individual DPI
Stateful DPI

N-GRAM

D
et

ec
ti

o
n

 r
at

e

(b) N-gram

0%

20%

40%

60%

80%

100%

DFR EF GS BW

Individual DPI
Stateful DPI

Dec

D
et

ec
ti

o
n

 r
at

e

(c) Decompilation

0%

20%

40%

60%

80%

100%

DFR EF GS BW

Individual DPI
Stateful DPI

Rung

D
et

ec
ti

o
n

 r
at

e

(d) Rung

0%

20%

40%

60%

80%

100%

DFR EF GS BW

Individual DPI
Stateful DPI

Opcode

D
et

ec
ti

o
n

 r
at

e

(e) Opcode
Fig. 10: Attack detection rate of features using both individual and stateful deep packet inspection (DPI) for DEFRAN

(DFR), EnigmaFlow (EF), GizmoSplit (GS), and BuffWarp (BW)

as a single control logic injection, resulting in substantially
different entropy values compared to those observed for the
entire control logic in a typical detection system.

N-gram. Figure 10(b) depicts the outcomes of n-gram analy-
sis. Notably, EnigmaFlow, GizmoSplit, and BuffWarp demon-
strate near-complete evasion of detection in individual DPI.
Even with stateful DPI, their detection rates remain signifi-
cantly lower compared to the DEFRAN attack. It is noteworthy
that EnigmaFlow’s detection rate was slightly higher than that
of GizmoSplit and BuffWarp. This discrepancy arises because
both GizmoSplit and BuffWarp segment the control logic,
making it more challenging for the detection system to identify
continuous sequences of bytes corresponding to control logic
code within the payload. In the case of EnigmaFlow, however,
given its mutation method using a simple XOR with a one-
byte value, the detection rate was comparatively higher. It is
crucial to recognize that the effectiveness of EnigmaFlow may
vary based on the specific mutation technique employed.

Decompilation. Figure 10(c) presents decompilation-based
evaluation results. DEFRAN achieves the highest detection
rate, followed by partially detected EnigmaFlow due to its
simple XOR mutation. GizmoSplit and BuffWarp show com-
parable results, with GizmoSplit’s detection rate slightly sur-
passing BuffWarp. This difference is attributed to GizmoSplit’s
segments, each functioning as an executable instruction, re-
sembling a gadget and allowing for successful decompilation.

Instructions. Figure 10(d) and Figure 10(e) show the evalua-
tion results using instructions (such as rung and opcode) as a
feature. In the case of Rung, both GizmoSplit and BuffWarp
show very low detection rates under both individual and
stateful DPI. This is attributed to the fact that the smallest
size of bytes translatable to a rung is typically greater than
the segment size chosen for these attacks. Additionally, Giz-
moSplit’s random addresses and BuffWarp’s fixed buffer for
placing control logic segments make it challenging to create a
shadow memory using the protocol header from network traffic
packets. EnigmaFlow demonstrates a lower detection rate com-
pared to DEFRAN, even under stateful DPI, due to the data
mutation preventing precise feature matching. However, in the
case of opcodes, EnigmaFlow exhibits a higher detection rate
compared to DEFRAN. The mutation process may generate
byte sequences that correspond to opcodes in the database. For
instance, XORing with the key value, 0x02, transforms 0x00
to 0x02 which corresponds to a ‘return’ instruction, resulting
in an increase in the number of detected instructions.

0%

20%

40%

60%

80%

100%

DEFRAN EnigmaFlow GizmoSplit BuffWarp

Individual DPI
Stateful DPI

D
et

ec
ti

o
n

 r
at

e

Accuracy

Fig. 11: Attack detection rate using aggregated features
Evaluation with all features combined. Figure 11 illustrates
the detection rates of attacks using all features combined.
Notably, the DEFRAN attack exhibits a 23.63% increase
in detection rate under stateful DPI. Among the proposed
techniques, EnigmaFlow shows a slight improvement under
stateful DPI, while GizmoSplit and BuffWarp, designed to
subvert stateful DPI, demonstrate negligible detection rates
for both DPI techniques. The inclusion of all features in a
detection system is crucial to avoid false positives specific to
particular features. Our attacks successfully evade detection,
maintaining rates below 30% using both DPI techniques.

D. Initial Attack Stage: RAP and PMC Evaluation

We assess RAP’s effectiveness, for PMC injection, in evad-
ing IDS using n-gram, instructions, and decompilation as
detection features. To minimize detection, we divide PMC into
byte-sized segments and then each segment is inserted via the
RAP approach, appearing in random locations while actually
being inserted at consecutive ones.
RAP randomness. Our examination of the M221 PLC re-
vealed that the aliased region can be accessed from 32 different
addresses (equivalent to 25, indicating five RAPs). This con-
figuration allows injections into contiguous physical memory
addresses through 32 seemingly non-contiguous addresses.
Detection of PMC payload. Table II presents the detection
results with and without RAP being employed for PMC’s
injection. Without RAP, PMC could be detected using features
like n-gram, instructions, and decompilation. However, with
RAP in use, PMC remained undetected in n-gram and decom-
pilation analyses. In the case of the instructions feature, only
one instruction (0x02, the ‘return’ instruction) was detected.
since it is one byte long and is necessarily part of all programs
including PMC. However, the detection of a single instruction
with just one byte in the entire code is often dismissed as a
false positive [53], [54].

E. Evaluating Attacks’ Effectiveness on an Elevator

Our attacks compromise a fully functional four-floor eleva-
tor in the testbed successfully. Figure 12 illustrates malicious

TABLE II: PMC injection made stealthier using RAP
Without RAP With RAP

N-gram Instructions Decompilation N-gram Instructions Decompilation
GizmoSplit PMC # G# #
BuffWarp PMC # G# #
EnigmaFlow PMC # G# #

F3CALL

%M6

Rung 4

%M35

a) Elevator getting stuck between 2nd and 3rd floor

Timer No. %TM0
Time Base 1sec
Preset 7

WATF2 UP

%M2 %Q0.0

%M35

Timer No. %TM0
Time Base 1min
Preset 10

TON

TON

S

R

%M35

Rung 5

S

%I0.8

%Q0.1

%Q0.0

LDR_OPEN

%Q0.3

DOOR_OPENUP

DOWN

Rung 8

b) Reverse door functionality (stays open when in motion)

Fig. 12: Malicious ladder logic snippets for elevator

ladder logic snippets from a compromised elevator program
with four essential instructions: XIC (e.g., F3CALL, WATF2,
UP, DOWN), TON (%TM2, %TM3), XIO (LDR_OPEN),
and OTE (%M35, %Q0.3). The XIC instruction examines
a bit, evaluating as true if the bit value is one and vice
versa, while XIO evaluates as true if the bit value is zero.
When Floor 3 is pressed (F3CALL), the elevator is at Floor
2 (WATF2), and it’s moving upward (UP); it continues for
7 seconds based on timer %TM2. Afterward, memory bit
%M35 is set, initiating a 10-minute delay with timer %TM3.
This delay effectively halts the elevator between the two
floors until %M35 is reset, allowing the elevator to resume
movement. Additionally, the program includes a reverse door
functionality. When the elevator is moving upward (UP) or
downward (DOWN), output bit %Q0.3 is set, causing the door
to open. We successfully implanted the control logic into the
PLC using all three attack methods. Figure 12(b) illustrates
the elevator malfunctioning under attack.

TABLE III: Impact of PMC appended to an elevator control
logic. The original control logic size is 659 bytes, and its
baseline scan-cycle time is 120-127µs.

Attack Method PMC Size (bytes) Control Logic Scan Time (µs) Delayed Time (µs)
GizmoSplit 11 120-127 >1
BuffWarp 29 140-150 >23
EnigmaFlow 43 150-170 >43

We evaluate the impact of injecting PMC on real-time
control of the elevator, measured by the PLC’s scan time.
After transmitting witchcraft-stage attacks to the PLC, PMC
activated as an initial vector. This may introduce a slight delay,
potentially increasing the scan cycle time. The extent of this
delay depends on PMC’s size. Table III shows scan times after
appending PMC to the 659 byte-sized control logic. Notably,
GizmoSplit maintains the same scan time as control logic

without PMC (120-127µs), indicating no significant delay due
to its small PMC size. BuffWarp, with a fixed size of 29 bytes,
adds a processing step, resulting in a scan cycle of 140-150µs.
EnigmaFlow, featuring a larger size of 43 bytes and complex
operations, exhibits the highest scan time, ranging from 150-
170µs.

VIII. Mitigation
Addressing our proposed attacks may appear feasible by en-

hancing learning mechanisms related to packet timing, header,
and payload in network traffic. However, this approach has its
own challenges. For example, BuffWarp operates predictably
with a consistent address during the scan cycle, making it chal-
lenging to differentiate between malicious and benign activi-
ties. Additionally, predicting payload encoding in EnigmaFlow
is uncertain and introduces substantial unpredictability, making
reliance on payload learning a precarious strategy.

Given our attack strategies exploit PLC memory architecture
vulnerabilities, traditional methods like DPI are obsolete. To
detect such attacks, the following approaches should be con-
sidered if traditional security measures (such as demilitarized
zones) are not feasible.
Memory-associated Monitoring System. Since all inputs that
can impact the PLC control logic, including vulnerabilities like
RAP, are written through the network, scrutinizing memory
alterations with precision could illuminate suspicious write
requests. Coupling this with insights about the sender of
these requests might give away any illicit activities. Such a
memory-focused monitoring system can be designed to detect
inconsistencies or anomalies in the memory write patterns
using fingerprinting, and digital signature.
Code verification methods. Like formal techniques, may be
considered for mitigation [28], [55]. However, they might
not be suitable here as the injected code falls outside the
verification scope due to its indirect nature, rendering these
methods ineffective against such attacks.
Control-flow integrity (CFI). prevents control-flow hijacking
attacks using predefined control-flow graphs. While CFI is
common in general computers, its use in real-time PLCs can
cause significant performance issues for industrial control sys-
tems (ICS). To address this, specialized CFI solutions like the
one in [56] are designed for ICS. They minimize performance
overhead while ensuring effective protection against control-
flow hijacking attacks.

IX. Conclusion
In this paper, we discussed vulnerabilities in PLC design

features and explored two features i.e., control logic download
and redundant address pins (RAP), to show that malicious
actors can exploit to stealthily inject a small piece of code
(PMC) into a PLC device. We demonstrated that PMC can be
attached to a PLC’s control logic code to run as part of the
program scan cycle allowing the actors to further compromise
the PLC to attack an underlying physical process. We proposed
three attack techniques such as GizmoSplit, EnigmaFlow, and
BuffWarp, as proof of concept that can bypass common IDS

features to further download and run a complete malicious
control logic. The attacks blended their payload with the
network traffic via payload encoding or small-sized payloads
and were challenging to detect by traditional IDS.

References
[1] “Havex Malware,” https://www.cisa.gov/uscert/ics/advisories/ICSA-14-

178-01, 2022, [Online; accessed 29-June-2022].
[2] R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon,” IEEE Secu-

rity Privacy, vol. 9, no. 3, pp. 49–51, May 2011.
[3] “CrashOverride Malware,” https://www.cisa.gov/uscert/ncas/alerts/TA17-

163A, 2022, [Online; accessed 29-June-2022].
[4] R. Dudley and D. Golden, “The colonial pipeline ransomware hackers

had a secret weapon: self-promoting cybersecurity firms,” 2021.
[5] B. Johnson, D. Caban, M. Krotofil, D. Scali, N. Brubaker,

and C. Glyer, “Attackers deploy new ics attack framework
“triton” and cause operational disruption to critical infrastruc-
ture,” https://www.mandiant.com/resources/blog/attackers-deploy-new-
ics-attack-framework-triton, 2021, [Online; accessed 26-Dec-2022].

[6] H. Yoo, S. Kalle, J. Smith, and I. Ahmed, “Overshadow plc to detect
remote control-logic injection attacks,” in Detection of Intrusions and
Malware, and Vulnerability Assessment: 16th International Conference,
DIMVA 2019, Gothenburg, Sweden, June 19–20, 2019, Proceedings 16.
Springer, 2019, pp. 109–132.

[7] M. H. Rais, R. A. Awad, J. Lopez Jr, and I. Ahmed, “Jtag-based plc
memory acquisition framework for industrial control systems,” Forensic
Science International: Digital Investigation, vol. 37, p. 301196, 2021.

[8] N. Zubair, A. Ayub, H. Yoo, and I. Ahmed, “Pem: Remote forensic
acquisition of plc memory in industrial control systems,” Forensic
Science International: Digital Investigation, vol. 40, p. 301336, 2022.

[9] M. Sun, Y. Lai, Y. Wang, J. Liu, B. Mao, and H. Gu, “Intrusion detection
system based on in-depth understandings of industrial control logic,”
IEEE Transactions on Industrial Informatics, vol. 19, no. 3, pp. 2295–
2306, 2022.

[10] M. Hailesellasie and S. R. Hasan, “Intrusion detection in plc-based
industrial control systems using formal verification approach in conjunc-
tion with graphs,” Journal of Hardware and Systems Security, vol. 2,
pp. 1–14, 2018.

[11] L. Garcia, S. Zonouz, D. Wei, and L. P. De Aguiar, “Detecting plc
control corruption via on-device runtime verification,” in 2016 Resilience
Week (RWS). IEEE, 2016, pp. 67–72.

[12] H. Yoo and I. Ahmed, “Control Logic Injection Attacks on Industrial
Control Systems,” in IFIP International Conference on ICT Systems
Security and Privacy Protection. Springer, 2019, pp. 33–48.

[13] N. Govil, A. Agrawal, and N. O. Tippenhauer, “On ladder logic bombs
in industrial control systems,” in Computer Security: ESORICS 2017
International Workshops, CyberICPS 2017 and SECPRE 2017, Oslo,
Norway, September 14-15, 2017, Revised Selected Papers 3. Springer,
2018, pp. 110–126.

[14] S. Senthivel, S. Dhungana, H. Yoo, I. Ahmed, and V. Roussev, “Denial
of engineering operations attacks in industrial control systems,” in
Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, 2018, pp. 319–329.

[15] N. Zubair, A. Ayub, H. Yoo, and I. Ahmed, “Control logic obfusca-
tion attack in industrial control systems,” in 2022 IEEE International
Conference on Cyber Security and Resilience (CSR). IEEE, 2022, pp.
227–232.

[16] W. Alsabbagh and P. Langendörfer, “Patch now and attack
later—exploiting s7 plcs by time-of-day block,” IEEE, pp. 144–151,
2021.

[17] A. Ayub, N. Zubair, H. Yoo, W. Jo, and I. Ahmed, “Gadgets of gadgets
in industrial control systems: Return oriented programming attacks on
plcs,” in Proceedings of the 16th IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2023.

[18] Cybersecurity and I. S. A. (CISA), “Understanding and mitigat-
ing russian state-sponsored cyber threats to u.s. critical infrastruc-
ture,” https://www.cisa.gov/uscert/ncas/alerts/aa22-011a, 2022, [Online;
accessed 29-June-2022].

[19] S. A. Qasim, W. Jo, and I. Ahmed, “Pree: Heuristic builder for reverse
engineering of network protocols in industrial control systems,” Forensic
Science International: Digital Investigation, 2023.

[20] S. Kalle, N. Ameen, H. Yoo, and I. Ahmed, “CLIK on PLCs! Attacking
control logic with decompilation and virtual PLC,” in Binary Analysis
Research (BAR) Workshop, Network and Distributed System Security
Symposium (NDSS), 2019.

[21] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, “Mcpad: A
multiple classifier system for accurate payload-based anomaly detec-
tion,” Computer networks, vol. 53, no. 6, pp. 864–881, 2009.

[22] D. Bolzoni, S. Etalle, and P. Hartel, “Poseidon: a 2-tier anomaly-
based network intrusion detection system,” in Fourth IEEE International
Workshop on Information Assurance (IWIA’06). IEEE, 2006, pp. 10–pp.

[23] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A content anomaly
detector resistant to mimicry attack,” in Recent Advances in Intrusion
Detection: 9th International Symposium, RAID 2006 Hamburg, Ger-
many, September 20-22, 2006 Proceedings 9. Springer, 2006, pp. 226–
248.

[24] T. Chang, Q. Wei, Y. Geng, and H. Zhang, “Constructing plc binary pro-
gram model for detection purposes,” in Journal of Physics: Conference
Series, vol. 1087, no. 2. IOP Publishing, 2018, p. 022022.

[25] A. Keliris and M. Maniatakos, “Icsref: A framework for automated re-
verse engineering of industrial control systems binaries,” arXiv preprint
arXiv:1812.03478, 2018.

[26] Y. Geng, Y. Chen, R. Ma, Q. Wei, J. Pan, J. Wang, P. Cheng, and
Q. Wang, “Defending cyber-physical systems through reverse engineer-
ing based memory sanity check,” IEEE Internet of Things Journal, 2022.

[27] O. Mirzaei, R. Vasilenko, E. Kirda, L. Lu, and A. Kharraz, “Scruti-
nizer: Detecting code reuse in malware via decompilation and machine
learning,” in Detection of Intrusions and Malware, and Vulnerability
Assessment: 18th International Conference, DIMVA 2021, Virtual Event,
July 14–16, 2021, Proceedings 18. Springer, 2021, pp. 130–150.

[28] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control
malware using automated plc code analytics,” IEEE Security & Privacy,
vol. 12, no. 6, pp. 40–47, 2014.

[29] M. Zhou, F. He, M. Gu, and X. Song, “Translation-based model checking
for plc programs,” in 2009 33rd Annual IEEE International Computer
Software and Applications Conference, vol. 1. IEEE, 2009, pp. 553–
562.

[30] A. Serhane, M. Raad, R. Raad, and W. Susilo, “Plc code-level vulnerabil-
ities,” in 2018 International Conference on Computer and Applications
(ICCA). IEEE, 2018, pp. 348–352.

[31] S. E. Valentine, “Plc code vulnerabilities through scada systems,” Ph.D.
dissertation, University of South Carolina, 2013.

[32] J. Klick, S. Lau, D. Marzin, J.-O. Malchow, and V. Roth, “Internet-
facing plcs as a network backdoor,” in 2015 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2015, pp. 524–
532.

[33] H. Hui, K. McLaughlin, and S. Sezer, “Vulnerability analysis of s7 plcs:
Manipulating the security mechanism,” International Journal of Critical
Infrastructure Protection, vol. 35, p. 100470, 2021.

[34] H. Hui and K. McLaughlin, “Investigating current plc security issues re-
garding siemens s7 communications and tia portal,” in 5th International
Symposium for ICS & SCADA Cyber Security Research 2018 5, 2018,
pp. 67–73.

[35] C. Schuett, J. Butts, and S. Dunlap, “An evaluation of modification
attacks on programmable logic controllers,” International Journal of
Critical Infrastructure Protection, vol. 7, pp. 61–68, 2014.

[36] C.-H. Tsang and S. Kwong, “Multi-agent intrusion detection system
in industrial network using ant colony clustering approach and unsu-
pervised feature extraction,” in 2005 IEEE international conference on
industrial technology. IEEE, 2005, pp. 51–56.

[37] P. G. Balikcioglu, M. Sirlanci, O. A. Kucuk, B. Ulukapi, R. K. Turk-
men, and C. Acarturk, “Malicious code detection in android: the role
of sequence characteristics and disassembling methods,” International
Journal of Information Security, vol. 22, no. 1, pp. 107–118, 2023.

[38] K. Yang, H. Wang, and L. Sun, “An effective intrusion-resilient mecha-
nism for programmable logic controllers against data tampering attacks,”
Computers in Industry, vol. 138, p. 103613, 2022.

[39] S. E. McLaughlin, S. A. Zonouz, D. J. Pohly, and P. D. McDaniel, “A
trusted safety verifier for process controller code.” in NDSS, vol. 14,
2014.

[40] P. Fogla, M. I. Sharif, R. Perdisci, O. M. Kolesnikov, and W. Lee,
“Polymorphic blending attacks.” in USENIX security symposium, 2006,
pp. 241–256.

[41] R. Spenneberg, M. Brüggemann, and H. Schwartke, “Plc-blaster: A
worm living solely in the plc,” Black Hat Asia, vol. 16, pp. 1–16, 2016.

[42] W. Alsabbagh and P. Langendörfer, “A stealth program injection attack
against s7-300 plcs,” IEEE, pp. 986–993, 2021.

[43] ——, “A control injection attack against s7 plcs-manipulating the
decompiled code,” IEEE, pp. 1–8, 2021.

[44] A. Ayub, H. Yoo, and I. Ahmed, “Empirical study of plc authentication
protocols in industrial control systems,” in 2021 IEEE Security and
Privacy Workshops (SPW). IEEE, 2021, pp. 383–397.

[45] K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion
detection,” in Recent Advances in Intrusion Detection: 7th International
Symposium, RAID 2004, Sophia Antipolis, France, September 15-17,
2004. Proceedings 7. Springer, 2004, pp. 203–222.

[46] A. Stolcke, “Entropy-based pruning of backoff language models,” arXiv
preprint cs/0006025, 2000.

[47] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[48] T. Kohonen, “self-organizing maps, volume 30 of springer series in
information sciences. spring-verlag,” Berlin,, 1997.

[49] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS ’07.
New York, NY, USA: Association for Computing Machinery, 2007, pp.
552—-561.

[50] M. Cinelli, Y. Sun, K. Best, J. M. Heather, S. Reich-Zeliger, E. Shifrut,
N. Friedman, J. Shawe-Taylor, and B. Chain, “Feature selection using a
one dimensional naïve bayes’ classifier increases the accuracy of sup-
port vector machine classification of cdr3 repertoires,” Bioinformatics,

vol. 33, no. 7, pp. 951–955, 2017.
[51] W. Feng, J. Sun, L. Zhang, C. Cao, and Q. Yang, “A support vector

machine based naive bayes algorithm for spam filtering,” in 2016
IEEE 35th International Performance Computing and Communications
Conference (IPCCC). IEEE, 2016, pp. 1–8.

[52] A. Bustamam, A. Bachtiar, and D. Sarwinda, “Selecting features subsets
based on support vector machine-recursive features elimination and one
dimensional-naïve bayes classifier using support vector machines for
classification of prostate and breast cancer,” Procedia Computer Science,
vol. 157, pp. 450–458, 2019.

[53] D. Breitgand, M. Goldstein, E. Henis, and O. Shehory, “Efficient
control of false negative and false positive errors with separate adaptive
thresholds,” IEEE Transactions on Network and Service Management,
vol. 8, no. 2, pp. 128–140, 2011.

[54] G. P. Spathoulas and S. K. Katsikas, “Reducing false
positives in intrusion detection systems,” Computers & Security,
vol. 29, no. 1, pp. 35–44, 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404809000844

[55] E. Kuzmin, V. A. Sokolov, and D. Ryabukhin, “Construction and
verification of plc-programs by ltl-specification,” Automatic Control and
Computer Sciences, vol. 49, pp. 453–465, 2015.

[56] A. Abbasi, T. Holz, E. Zambon, and S. Etalle, “Ecfi: Asynchronous
control flow integrity for programmable logic controllers,” pp. 437–448,
2017.

