

2	 Month/Month 2023	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/23©2023IEEE

How Are Industrial Control Systems
Insecure by Design? A Deeper Insight Into
Real-World Programmable Logic Controllers

Adeen Ayub , Wooyeon Jo , Syed Ali Qasim , and Irfan Ahmed | Virginia Commonwealth University

Programmable logic controllers (PLCs) have design features to enable operations, such as real-time
control of physical processes. These features have weaknesses, making PLCs vulnerable to attacks
(network/firmware based). We study these features and attacks and suggest security requirements for
designing a PLC.

I ndustrial control systems (ICSs) monitor and con-
trol industrial physical processes, such as nuclear

plants, oil and gas pipelines, traffic lights, etc.1 Figure 1
presents a typical example of an ICS environment. It
consists of a control center and a field site. The field
sites use programmable logic controllers (PLCs), sen-
sors, and actuators to control the physical processes.
For instance, in the case of a conveyor belt that sorts
metal and plastic objects, the PLC receives differ-
ent sensor data and then processes these data using a
control logic to make sure the belt runs and sorts the
objects accurately. The control center runs ICS ser-
vices, such as a human–machine interface (HMI), con-
trol server, historian, and engineering workstation. The
HMI shows the current state of the physical process.
At the same time, the historian keeps logs of the PLC’s
input and output data for forensic and analytic pur-
poses. The control server communicates with the field
site over the network. The engineering workstation
runs the engineering software, which is provided by the

PLC vendor. A control engineer uses the engineering
software to download (write) and upload (read) a con-
trol logic program on and from a PLC, respectively, to
control and maintain the connected physical process.
The IEC 61131-3 standard defines five languages to
write a control logic: ladder logic, instruction list, func-
tional block diagram, structured text, and sequential
flowchart.

PLCs have common design features across differ-
ent vendors to enable engineering operations, such as
real-time control and monitoring of a physical process,
use of the scan cycle to run a control logic continu-
ously, etc. The security capabilities are, however, com-
promised and neglected, thereby making the PLCs
inherently insecure. The vulnerability of PLCs to
security threats has been a known issue for some time,
and researchers have highlighted this problem in their
studies.11 In this article, we focus on common design
features in PLCs and study how these features have
weaknesses that make them exploitable. For each fea-
ture, we show attacks exploiting that particular feature.
For instance, the scan cycle of a PLC is needed to run
a control logic continuously. This feature is exploited

Digital Object Identifier 10.1109/MSEC.2023.3271273
Date of current version: 23 May 2023

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on May 30,2023 at 16:23:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9623-5810
https://orcid.org/0000-0002-6595-0117
https://orcid.org/0000-0001-5333-9153
https://orcid.org/0000-0001-5333-9153
https://orcid.org/0000-0001-5648-388X
https://orcid.org/0000-0001-5333-9153

www.computer.org/security� 3

in a direct firmware object manipulation attack, where
the attacker injects malicious code to the existing
control logic to make the malicious change effective
with every scan cycle. The malicious code modifies a
jump table entry (in the firmware) to manipulate the
timer function. Finally, we discuss security require-
ments that should be taken into consideration for PLC
design.

PLCs
PLCs are embedded devices that are programmed to
automate and control the physical processes in an ICS
environment.

Figure 2 shows a typical architectural layout of a
PLC.2 It has input–output (I/O) ports through which
the physical process is connected. For instance, push
buttons, sensors, and switches are connected to the
input ports of a PLC, while the lights, relays, etc., are
connected to the output ports. It has a firmware as
well as a hardware component with a random-access
memory (RAM) and CPU. Some part of the PLC’s
memory (nonvolatile) is assigned to the control logic
program, which is written via the engineering software.
The PLC communicates with the engineering soft-
ware in the form of request/response messages with
the PLC acting as a server while the engineering soft-
ware acts as a client. Each PLC uses an ICS protocol for

communication. Some embed their proprietary proto-
cols over well-known protocols, such as Modbus, ENIP,
and DNP3.

Figure 1. Overview of an ICS. PLC: programmable logic controller; HMI: human–machine interface; PBX: private branch
exchange; LAN: local area network; MTU: maximum transmission unit; SCADA: supervisory control and data acquisition.

Control Center Corporate Network

HMI Workstation

SCADA System LAN

Historian Control Server
(MTU)

PBX
Modem

Corporate LAN

PBX

Modem

WAN

External Communication Infrastructure

Internet

WAN Card
PLCPLCPLC

ModemModem

Field
Sites

Power Supply

Input
Module

Output
Module

Hardware

RAM EEPROM CPU

Physical Process (Gas Pipeline, Conveyor Belt, etc.)

I/O I/O

Memory

Configuration
Data Data

Control (Ladder)
Logic Program

Firmware/
OS

Figure 2. All PLCs typically have I/O modules and hardware including
nonvolatile memory (EEPROM). I/O modules, such as sensors and actuators,
are attached to perform physical processes. I/O: input–output; EEPROM:
electrically erasable programmable ROM; RAM: random-access memory; OS:
operating system.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on May 30,2023 at 16:23:00 UTC from IEEE Xplore. Restrictions apply.

4	 IEEE Security & Privacy� Month/Month 2023

PLC Design Features
PLCs have common design features to enable engineer-
ing operations, including the following. The subsequent
sections elaborate on them along with their potential
exploitation.

■■ real-time control and monitoring of a physical process,
such as controlling the gas pressure in a gas pipeline

■■ user authentication to allow only authorized remote
access to a PLC

■■ scan cycle to run a control logic repeatedly
■■ remote PLC maintenance through an engineering

workstation
■■ control logic decompilation by engineering (program-

ming) software to retrieve and decompile a control
logic from a PLC

■■ support for ICS network protocols to enable communi-
cation between field sites and the control center and
among PLCs

■■ device operation modes consisting of program, run,
remote, and test

■■ connection to I/O devices, such as sensors and actuators
attached to a physical process.

Real-Time Control and Monitoring
A PLC’s primary design requirement is the real-time
control of changes in a monitored physical process. For
instance, the Schneider Electric Modicon M221 PLC is
supposed to control motion at the submillisecond level.
Any device features that may compromise the real-time
control are unsuitable for PLC engineering design.

Since ICSs were originally isolated environments
with no connectivity to the outside world, they were not
resilient against cyberattacks. In recent years, ICSs are
increasingly connected to corporate intranets and other
IT networks to gain economic advantages. However,
the integration of ICSs and the IT world has exposed
ICS environments to cyberattacks.

There is a dire need to incorporate cybersecurity
solutions in ICS devices and networks. However, con-
sidering the legacy nature of ICSs, adding security fea-
tures (such as encryption, message authentication, and
device memory protection) to a PLC is challenging
while maintaining the required speed with which a PLC
operates and responds to changes in a physical process.
The vendors may choose to upgrade a PLC’s hardware.
However, this will raise the PLC’s cost and not cover the
PLCs that are already deployed and functional. These
PLCs tend to last for decades; replacing them before
their end of life involves substantial costs.

User Authentication
PLCs use password-based authentication. Engineering
software can set it up while configuring a PLC. A recent
study on PLC authentication protocols reveals funda-
mental issues, including shared passwords, one-way
authentication, and weak encryption and encoding.3
It involves the PLCs of different vendors, including
Schneider Electric’s Modicon M221, Siemens’ S7-300,
Allen-Bradley’s MicroLogix 1100/1400, and Automa-
tionDirect’s CLICK PLC.

Shared Group Password
PLCs authenticate using a single user group that shares a
password. They do not require identification data, such
as the username, as part of the authentication process.
PLCs consider the communicating user as an autho-
rized entity if the user knows the correct password.

One-Way Authentication
PLCs use one-way client authentication. They require
authentication from the engineering software (client)
but not vice versa. The PLCs as a server do not authen-
ticate with the engineering software.

Weak Password Encryption on Siemens S7-300
Figure 3(b) shows the weak authentication protocol of
the Siemens PLC involving a preshared key of one byte,

User PLC User PLC

User PLC User PLC

auth_reg auth_reg, E(pwd, KCP)

*(K = pre-shared key)
m1

m2, m1 ⊕ m2 ⊕ H(pwd)

auth_res. error code (e)

auth_res. e
m1 = one-byte mask

first auth_req, pwd

auth_res

auth_req

auth_res. e

RP

*(RP = Random number)

E(pwd, RP), E(new_pwd, RP) a1_req

a1, (e, pwd)

(a) (b)

(c) (d)

Figure 3. Authentication mechanisms may vary from vendor to vendor, but
the design issues with each protocol are quite similar.3 (a) Schneider Electrics’
Modicon M221 authentication protocol, (b) Siemens’ S7-300 authentication
protocol, (c) Allen-Bradleys’ MicroLogix 1400 (Enhanced Password
Security) password set/reset protocol, and (d) AutomationDirect’s CLICK
authentication protocol.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on May 30,2023 at 16:23:00 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 5

“K,” encrypting an 8-byte password. The encryption
algorithm consists of the following steps.

1.	 First, all eight characters of the password are passed
through an encoder that encodes each character
according to a substitution table. Figure 4 shows the
encoded values for a few characters.

2.	 Next, the first two encoded values are XORed
with K to produce E1 and E2, while the rest of the
characters are XORed with K and E(i-2) to pro-
duce Ei, where i can be a whole number from 3 to
8. The encryption algorithm is quite weak. It does
not have sufficient diffusion and confusion layers.
An attacker can recover the one-byte key from just
one plaintext/ciphertext pair. The substitution is
conducted at a byte-by-byte level (character by
character), making it trivial to reverse engineer the
substitution table.

The Siemens S7-300 PLC consists of different
blocks, such as an organization block, a functional
block, a data block, and a system data block (this block
contains the encrypted password). An attacker sends
a read request for the system data block to capture the
encrypted password. Using the predetermined encryp-
tion algorithm, the attacker can decrypt the password.

Weak Password Encoding on Modicon M221
The Modicon M221 employs password encoding
during the authentication process to hide the pass-
word hash in transit. However, the encoding scheme
is weak and can reveal the hash to the attacker upon
eavesdropping. Figure 3(a) shows the protocol using
two masking bytes, each of size one byte. It XORs
both masking bytes with each byte of the SHA-256
password hash. Since the masking bytes and encoded
password hash are exchanged between a PLC and
engineering software, the attacker can eavesdrop and
decode the hash.

Denial of Password Authentication Service on
Allen-Bradley MicroLogix 1400
The password set/reset protocol of the MicroLogix
1400 is shown in Figure 3(c). The engineering software
first sends an authentication request to which the PLC
responds with a random 20-byte challenge. The user
then sends a 40-byte response, with the first 20 bytes
being the old password encrypted with the challenge
and the last 20 bytes being the value of the new pass-
word encrypted with the challenge. The PLC checks
the value of the first 20 bytes received to confirm if
the entered password was correct. If it is, the authen-
tication is successful, and the password is updated to
a new value. An attacker can intercept this network

traffic and update the value of the last 20 bytes with a
random value. Since the first 20 bytes were unchanged,
the password set/reset operation is successful, and the
new password is set to a random value unknown to the
legitimate user.

Poor Password Management on CLICK PLC
CLICK’s authentication protocol in Figure 3(d) has a
number of problems. 1) The password is transmitted in
plaintext. 2) The PLC has a global state that indicates
if it is authenticated. So if a legitimate user is success-
fully authenticated, it allows all other devices to com-
municate with it without authentication required. 3)
The PLC stores the last entered password in credential
stores that can be accessed by sending a read request to
these stores.

Scan Cycle of Control Logic
A scan cycle runs a control logic continuously and
repeatedly to ensure that a connected physical pro-
cess does not halt at any given time. In each cycle, a
PLC gathers data from input devices, such as sensors,
and runs the control logic program while updating
the output data associated with actuators to control a
physical process.

Engineering workstations can update a control logic
in a PLC remotely. This feature inherently enables
remote code injection, allowing attackers to append the
control logic with malicious code. The scan cycle takes
care of the execution of the attacker’s code to target the

Character

!

“

#

A

B

a

b

c

C

Encoded
(Hex)

11

12

13

71

72

73

51

52

53

Plain Text
Message

Encryption Table

Encoded
Message

Siemens
Encoder

Encoded
Payload

K

Figure 4. The encryption algorithm of the Siemens S7-300 has a scheme that
performs XOR with key (K) after encoding. Because of the weak scheme of the
encryption algorithm, the security design of cheap PLCs is insufficient, so that
even the encryption table can be identified through reverse engineering.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on May 30,2023 at 16:23:00 UTC from IEEE Xplore. Restrictions apply.

6	 IEEE Security & Privacy� Month/Month 2023

PLC’s memory regions that are inaccessible through
ICS protocols. Following are two examples; one targets
the firmware jump table, while the other manipulates a
PLC stack for return-oriented programming (ROP).

Direct Firmware Object Manipulation
Direct firmware object manipulation (DFOM) targets
a firmware data structure to perform an attack. For
instance, the M221 PLC maintains a jump table con-
taining the addresses of the firmware’s built-in func-
tions, such as the timer and counter used by the control
logic.9 DFOM compromises a control logic by target-
ing a function in the jump table. Specifically, it modifies
the jump table to hijack the timer function of a control
logic that turns on a light after a delay of 3 s. DFOM first
injects a malicious payload for the timer (which disables
the delay in turning on the light) in the on-chip RAM
region of the PLC and then modifies the jump table
with the address of the malicious timer code.

ROP
ROP is an exploitation technique that uses gadgets
in a device’s memory to run malicious code.10 A gad-
get is a block of machine instructions that ends with a
’return’ instruction. An attacker populates the stack with
the memory addresses of gadgets to execute them in a
sequence forming a malicious code.

ROP on a PLC is a possible ICS attack and is dif-
ferent from ROP attacks in the IT world. It does not
require taking administrative privileges (such as getting
a shell) or complete control of the target device. Instead,
the attacker needs a set of gadgets that ultimately
manipulate the output ports of a PLC to sabotage the
connected physical process. For example, in the case of
PLCs that use the RX Renesas architecture, register R0

is the stack pointer, R12 maps to input ports, and R13
maps to output ports of a PLC. Figure 5 shows a few
gadgets that manipulate the value of the R13 register.
An attacker can use these gadgets to update the value of
a PLC’s output ports, affecting the correct functioning
of the connected physical process.

The other differences include installing gadgets in
the stack without user input or buffer overflow and
ensuring that the attack runs in each scan cycle and
not once when an attacker installs the gadgets. Our
successful ROP attack requires an initial attack vec-
tor involving appending a small stack modification
code (which modifies the contents of the stack with
the attacker’s gadgets) to the existing control logic. As
the gadgets execute, they are removed from the stack.
However, the stack modification code repopulates the
stack in each scan cycle when it runs along with the
original control logic.

Remote PLC Maintenance
A control engineer uses the engineering workstation
to configure and update a PLC configuration remotely,
including network and protocol configurations and
control logic. Similarly, the attacker can target a control
logic and inject malicious code, as discussed in the last
section. However, since most PLCs run different con-
trol logics, targeting a large number of PLCs requires an
automated infection process that takes into account the
current control logic in a target PLC. Further, instead
of modifying the original control logic, the attacker can
be stealthy and download a malicious control logic to a
separate PLC memory region often accessible through
ICS protocols, such as the I/O data region.

Automated Control Logic Infection
CLIK automates the infection process in four phases,5
as shown in Figure 6. The first step bypasses PLC
authentication to retrieve an original control logic from
a PLC. PLCs employ password-based authentication
mechanisms that are often weak and prone to subver-
sion.3 The second step decompiles the control logic (in
machine instructions) to a high-level source code in the
instruction list, ladder logic, or other IEC 61131-3 lan-
guages. In the third step, CLIK uses a rule-based mali-
cious logic generator to add malicious functionality to
the original control logic, which is then compiled and
transferred to the PLC.

The fourth and final step is to conceal the infection
from the control engineer. CLIK utilizes a prebuilt vir-
tual PLC that intercepts the network traffic between
the engineering workstation and a target PLC. When a
control engineer requests an upload operation from the
PLC to read the infected program, the virtual PLC sends
the original control logic initially stolen from the PLC.

Offset
Binary
Code Assembly

Offset
Binary
Code Assembly

0x1f858: 7c 3c �
btst #3, r12
rts

Memory

Control
Logic

0x1de2a: fd e1 2d
bmc #1, r13
rts

Figure 5. Unlike typical IT, where data execution attacks, such as ROP attacks,
are widely known, most PLCs are not designed to defend against them. All
gadgets are indexed from memory to exploit the ‘return’ instruction. This figure
shows two gadgets in the memory that can be used to construct a control logic
that turns on a light if a certain push button is pressed.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on May 30,2023 at 16:23:00 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 7

Data Execution Attack
PLCs do not employ data execution prevention
(DEP), allowing attackers to execute any memory
block.4 The attacker exploits it to inject malicious
control logic into memory blocks accessible through
an ICS protocol. Specifically, the attacker targets the
memory regions commonly read and written by ICS
services to avoid firewall rules. Considering that the
HMI reads I/O data periodically, the attacker trans-
fers a malicious control logic in small chunks to the
PLC’s data blocks and then redirects the system con-
trol flow to execute it (as shown in Figure 7). For
instance, the M221 PLC stores the base address of
the control logic in the configuration block (shown in
Figure 8), which can be modified to run the code in
the data block.

Control Logic Decompilation
Engineering (programming) software has a built-in
decompiler integrated with the upload functionality to
retrieve a control logic from a PLC and then decompile
it to one of the IEC 61131-3 languages, such as ladder
logic or structured text. The upload functionality sup-
ports an essential engineering operation to examine
and update a PLC’s control logic. When an attacker
modifies the control logic in a PLC, it also disables the
decompilation capability to avoid exposing the mali-
cious control logic. The attacker achieves this by chang-
ing the header values and machine instructions of the
control logic program.

Denial of Engineering Operations Attack
Denial of engineering operations (DEO) attacks7
subvert the engineering software from acquiring or
uploading an infected control logic in a PLC. The
control logic runs successfully in the PLC, but it fails
to perform the upload function, as shown in Figure 9.
For example, in the case of Allen-Bradley’s MicroLogix
1400, the attacker can craft and download a malicious
control logic on the PLC. This can be done by simply
adding an additional rung before the last rung in a lad-
der logic program at the byte-code level. The addition
of one rung changes the content and size of control
logic files including the configuration, data files, etc.
The addition of one rung at byte code makes a discrep-
ancy between the actual control logic and its metadata
(configuration file). Since engineering software relies
on the configuration file/metadata to recompile the
binary control logic into a higher level representation,
it is unable to acquire the control logic from the PLC
memory, but it can still run on the PLC. In this way,
the attacker can develop a malicious control logic that
works on the actual PLC but crashes the engineering
software on upload.

Control Logic Obfuscation Attack
This attack6 obfuscates a control logic code to cause
a discrepancy in the engineering software’s decom-
pilation process. Specifically, the attacker rewrites a
control logic program using machine instructions that
are not aligned with the engineering software decom-
pilation. However, since the PLC executes machine
instructions, it runs the obfuscated control logic suc-
cessfully. When a control engineer tries to acquire
the obfuscated code using engineering software, the
software fails to decompile it. This attack was demon-
strated on two PLCs: the Modicon M221 and Siemens
S7-300.

Support for ICS Network Protocols
PLCs communicate with the engineering software
through request/response messages. The engineering
software (the client) sends a request, while the PLC
(the server) generates a response. PLCs are required

Normal
Logic in Binary

Exploiting a
Vulnerability

Retrieve
Control Logic

Malicious
Logic in Binary

Normal
Logic in Code

P1: Retrieve
Control Logic

P2: Decompile

P4: Concealment

Engineering Software

PLC
With Password Protection

P3: Infect

Virtual PLC

Figure 6. A control logic infection attack consists of four phases. Phase 1 (P1)
compromises the PLC security measures and retrieves the control logic. In P2,
the stolen (compiled) binaries are decompiled and transferred to P3. P3 injects
malicious logic and then transmits the infected binary back to the PLC. P4 hides
the PLC’s malicious logic from the engineering software using a virtual PLC.

After Code Injected

Config.
Block

Data
Block

Code
Block

Original
Code

Code Runs!

Code
Frag. 1

Code
Frag. 2

Address
Table

Change the Address in Table

Figure 7. Data execution attack subverts signatures based on packet header
fields by redirecting the address table in configuration (metadata) block from the
original control logic code to data blocks. Config.: configuration; Frag.: fragment.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on May 30,2023 at 16:23:00 UTC from IEEE Xplore. Restrictions apply.

8	 IEEE Security & Privacy� Month/Month 2023

to support various ICS protocols to provide heteroge-
neous communication and functions.

For example, Allen-Bradley’s MicroLogix 1400 sup-
ports protocols such as ENIP, DNP3, and Program-
mable Controller Communication Commands, which
is a proprietary protocol. If these protocols are not
encrypted, they can be targeted by attackers to initiate
communication with the PLC and launch an attack with
reverse engineering.13 The recent attack targets on ICSs
(Industroyer 2.0) are also based on a deep understand-
ing of ICS protocols. The following examples further
illustrate the manipulation of ICS protocols.

Fragmentation and Noise Padding Attack
In a fragmentation and noise padding attack, an attacker
subverts network detection for malicious code by trans-
ferring control logic in multiple packets byte by byte.
This attack exploits the fact that deep packet inspection
techniques cannot detect attack packets that contain
significantly small-sized attack payloads because these
packets tend to blend in with normal packets.

Figure 10 shows a fragmentation and noise pad-
ding attack. In each packet, the attacker sends one byte
of control logic followed by noise, which can easily be
ignored by network detection tools. To ensure that
the target PLC does not use noise and only executes
the control logic code, the start location of each write
request increments by one instead of incrementing by
the size of the last write request. This way, in each write
request the previously written noise is overwritten with
the next control logic byte. This process goes on until
the entire control logic is written on the PLC memory.

Man-in-the-Middle Attack
Man in the middle (MITM) is a well-known threat in the
IT as well as the ICS industries. It manipulates the mes-
sages in transit by intercepting the traffic between two
legitimate parties. The following two attacks make use
of the MITM approach to hide an infected control logic
from a control engineer who tries to retrieve it via engi-
neering software. An attacker, however, needs to reverse
engineer the communication protocol to know the
semantics and change the messages in transit so they are
accepted by the PLC as well as the engineering software.

1.	 DEO 1: This attack intercepts the communication
between the engineering software and the PLC.7
The attacker first replaces part of the ladder logic
being downloaded with infected logic. Then, upon
an upload request from the engineering software,
the attacker intercepts and manipulates the pack-
ets in transit and changes the infected control logic
with the legitimate one to make sure the infection
remains hidden from the control engineer.

Figure 9. Rockwell Automation’s RSLogix Micro Starter pops up the “Upload Failed!”
message with an unknown error from the decompiler as a result of a DEO attack.

Addr: x N-Byte Frag Noise Padding

x = x + N

PLC
Memory

Data Block

1-byte

1-byte

1-byte

1-byte

1-byte

2-byte

2-byte

2-byte

N-byte

N-bytes of
Malicious Control Logic Code

Figure 10. Fragmentation and noise padding attack.

Conf1 Conf2

Zip

data1

data2

code

Pre-defined:

AddrLO: 0xFED4
Addrup: 0x0001

Size: 0x10000 or 300

from Conf1 file:

AddrLO: [0x68:0x6A]
Addrup: [0x6A:0x6C]

Size: [0x6C:0x6E]

from Conf2 file:

(p) AddrLO: 0x8000
Addrup: 0x0701

Size: [-0x36:-0x34]

from Conf2 file:

(p) AddrLO: 0x0200
(p) Addrup: 0x0000

Size: [0x34:0x36]

from Conf2 file:

AddrLO: [-0x24:-0x22]
(p) Addrup: 0x0701

Size: [-0x20:-0x18]

from Conf1 file:

AddrLO: [0x70:0x72]
Addrup: [0x72:0x74]

Size: [0x74:0x76]

No Addr[Lower,Upper] Size Type

1

2

0x4f6C

0xD000

0x0704

0x0007

Conf2

Zip

0x0094

0x18b2

6 0x0200 0x0730 Data20x8100

Figure 8. Metadata of Schneider Electric’s Modicon M221. The upper diagram
illustrates the metadata structure of the M221 PLC, while the table in the
middle summarizes this information. The binary data (in hexadecimal form)
of Configuration 1 (Conf1) is displayed at the bottom, which contains the
outlined address (red) and size (blue) information for most metadata areas.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on May 30,2023 at 16:23:00 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 9

2.	 DEO 2: In this attack, the attacker intercepts the
network traffic and replaces part of the ladder
logic instructions with noise as it is being trans-
ferred from a PLC to programming software in an
engineering workstation.7 This infection basically
causes the engineering software to crash.

Device Operation Modes
Most PLCs have different modes, such as program, run,
remote, and test modes. These modes represent dif-
ferent states in the PLC, and each mode allows certain
PLC operations. For example, in run mode, the PLC
disables remote memory read/write operations and
focuses only on executing the control logic. Similarly, if
the control engineer wants to make any changes to the
PLC memory, that is, upload or download control logic,
the PLC has to be in program mode. In program mode,
the PLC halts the execution of control logic and allows
the user to make read/write operations on the PLC
memory. Some PLCs also have a test mode. This mode
is used to test the program execution before allowing
the PLC to operate real-world outputs.

The user can change the mode of a PLC remotely
from the engineering software. Upon the user’s action,
the engineering software sends a command message to
the PLC to go to the desired mode. Since these modes
can change the state of the PLC and control the execu-
tion of control logic as well as the access to PLC mem-
ory, they can be exploited by the attacker to sabotage
the working of an ICS.

Control Logic Engine Attack
A control logic engine attack8 is different from typical
control logic injection attacks in that it targets the logic
engine (responsible for running the control logic) of a
PLC by exploiting the PLC modes instead of transfer-
ring a malicious control logic. In this attack, the attacker
tries to put the PLC in a state where it is unable to exe-
cute the control logic written on it. The attacker can
capture the network communication between the PLC
and the engineering software, identify the messages
responsible for the mode change, and replay these mes-
sages to the targeted PLC. This is possible because the
engineering software sends the command message to
change the PLC mode. Network monitoring to notice
a mode change is now a well-known path to inter-
rupt communication between PLCs and engineering
workstations.11

Connection to I/O Devices
As shown in Figure 2, PLC I/O is discrete I/O that
in most cases is connected through I/O modules on
the PLC. Since I/O is an analog device that generates
signals, an ICS uses I/O modules to collect data and

transmit them to the PLC based on serial communica-
tion protocols for industrial systems. For example, Allen
Bradley’s Flex I/O and Siemens’ ET 200 series are rep-
resentative I/O modules. The I/O modules use indus-
trial serial protocols to transfer data to the PLC module.
These design features make a PLC vulnerable to attacks
that attempt to corrupt the I/O module by manipulat-
ing its data. For instance, it is possible to insert false
(manipulated) I/O data into an injection attack in a
fully blind situation.14 Since this attack manipulates data
representing I/O controllers and I/O devices, it impairs
the operation of I/O modules and PLCs. Manipulating
I/O data successfully shows that these I/O data are not
being properly validated.

Discussion
Traditionally, ICSs operated in isolation, providing a
secure environment for critical infrastructure. However,
with the rise of connectivity to corporate networks and
the Internet, these systems have become vulnerable to
cyberthreats.12 To address this, organizations like the
Cybersecurity and Infrastructure Security Agency and
the ICS Cyber Emergency Response Team are making
continuous efforts, such as releasing new advisories.15

This section will discuss security requirements for
PLCs in ICSs. Some may act independently as counter-
measures against specific attacks, but the mutual ben-
efit is more significant when they are applied together.
Completely redesigning the PLCs would be one of the
solutions, but this approach entails a high cost and
potential backward compatibility issues. The limitation
arising from the PLC design, which prioritizes avail-
ability above all else, instills fear of change among users
and vendors.3

Although PLC manufacturers somewhat fulfill these
security requirements, it is important for them to high-
light these measures to end users. For instance, Rock-
well Automation’s Logix 5000 satisfies some of the
requirements outlined next, but it is still necessary to
emphasize them as the user may overlook them.

User Management
Typically, there are multiple users who manage PLCs
in the field. In modern IT, it’s a standard practice to
independently identify and authorize each user for secu-
rity purposes. However, PLCs entrust the control
center with these security essentials, making them vul-
nerable if an unauthorized individual gains access to
the control center.

Source Verification
The PLC accepts messages from what appears to be a
legitimate source without verifying the source. Source
verification is not applied to both the node and the code,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on May 30,2023 at 16:23:00 UTC from IEEE Xplore. Restrictions apply.

10	 IEEE Security & Privacy� Month/Month 2023

even if the message contains the control logic source
code. Engineering software often supports a code veri-
fication function, but the PLC rarely verifies the trans-
mitted source code. Suppose all nodes go through an
appropriate authentication and the transmitted con-
trol logic can be verified; then it is challenging for an
attacker to induce malicious actions in the PLC.

Standard Cryptographic Algorithms
Authentication without confidentiality is vulnerable;
thus, widely known authentication methods employ
encryption. However, PLCs cannot easily apply the
application of standard data cryptographic algorithms,
such as public-key infrastructure, which requires a
trusted certificate authority. Although there may be an
initial financial burden for PLC vendors, it is a better
investment in the long run compared to the potential
damages and risks that may occur from weak authenti-
cation methods.

Memory Access Control
Since PLCs are configured and programmed using engi-
neering software, they have the privilege to remotely
read and write data on the PLC memory. However,
access to the sensitive area in a nonvolatile memory
should be verified with access control to secure the con-
trol logic of the PLC. Some PLCs even provide access
rights to registers corresponding to stack pointers,
making it essential to have memory access control that
requires a separate procedure to access sensitive mem-
ory regions.

DEP
To protect against attacks like CLIK and control logic
injection, PLCs must enforce protection schemes like
DEP that prevent an attacker from running executable
code in the memory. With protection schemes like
DEP, an attacker will not be able to execute an injected
malicious code. DEP can be implemented in both soft-
ware and hardware. Software-based DEP is typically a
feature of the operating system, while hardware-based
DEP requires support from the processor. Implement-
ing DEP in PLCs can be challenging because of resource
constraints, limited operating system support, compat-
ibility issues, and increased costs.

Key Management
In the field of key management, it is widely recognized
that all keys should be updated periodically as a secu-
rity measure. Even if users do not utilize the password
change function, there should be minimal effort required
to convert the internally encoded result. It is imperative
that vendors improve the default key management sys-
tems to ensure an appropriate level of security.

P LCs provide real-time control of changes in a con-
nected physical process and directly control criti-

cal infrastructure, making them attractive targets for
attackers aiming to sabotage physical processes. Imple-
menting cybersecurity features in PLCs, such as user
management, source verification, and cryptographic
algorithms, often involves tradeoffs between the pri-
mary requirement of real-time control and the need for
security. For example, introducing cryptographic meth-
ods can potentially impact the real-time performance
of the system as both the PLC and the communicating
entity will need to encrypt and decrypt messages. The
degree of impact will depend on the specific encryption
method utilized. Additionally, implementing memory
access control and DEP measures can further enhance
the security of PLCs. However, these measures can also
introduce new challenges to vendors, such as bypassing
authentication, which renders the security feature inef-
fective. The security features in current PLCs are insuffi-
cient and often contain many exploitable vulnerabilities
due to bad design and poor implementation choices.

Therefore, it is crucial to carefully consider the trad-
eoffs between security and system performance when
designing and implementing security features in PLCs.
This article explored the different operational features
of various PLCs and further discussed how attackers
can exploit them to launch an attack on ICS. By under-
standing these tradeoffs and potential vulnerabilities/
solutions, we can develop more effective security mea-
sures to protect critical infrastructure while maintaining
the indispensable design requirements.

Acknowledgment
This material is based upon work supported by the U.S.
Department of Homeland Security under Grant Award
17STCIN00001-05-00.

Disclaimer
The views and conclusions contained in this document are
those of the authors and should not be interpreted as nec-
essarily representing the official policies, either expressed
or implied, of the U.S. Department of Homeland Security.

References
	 1.	 I. Ahmed et al., “SCADA systems: Challenges for forensic

investigators,” Computer, vol. 45, no. 12, pp. 44–51, Dec.
2012, doi: 10.1109/MC.2012.325.

	 2.	 I. Ahmed et al., “Programmable logic controller foren-
sics,” IEEE Security Privacy, vol. 15, no. 6, pp. 18–24, Nov./
Dec. 2017, doi: 10.1109/MSP.2017.4251102.

	 3.	 A. Ayub et al., “Empirical study of PLC authentication
protocols in industrial control systems,” in Proc. IEEE
Secur. Privacy Workshops, 2021, pp. 383–397, doi: 10.1109/
SPW53761.2021.00058.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on May 30,2023 at 16:23:00 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/MC.2012.325
http://dx.doi.org/10.1109/MSP.2017.4251102
http://dx.doi.org/10.1109/SPW53761.2021.00058
http://dx.doi.org/10.1109/SPW53761.2021.00058

www.computer.org/security� 11

	 4.	 H. Yoo and I. Ahmed, “Control logic injection attacks
on industrial control systems,” in Proc. IFIP Int. Conf. ICT
Syst. Secur. Privacy Protection, Cham, Switzerland: Springer,
2019, pp. 33–48.

	 5.	 S. Kalle et al., “CLIK on PLCs! Attacking control logic
with decompilation and virtual PLC,” in Proc. Binary Anal.
Res. Workshop, Netw. Distrib. Syst. Secur. Symp., 2019, pp.
1–12, doi: 10.14722/bar.2019.23074.

	 6.	 N. Zubair et al., “Control logic obfuscation attack in
industrial control systems,” in Proc. IEEE Int. Conf. Cyber
Secur. Resilience, 2022, pp. 227–232, doi: 10.1109/
CSR54599.2022.9850326.

	 7.	 S. Senthivel et al., “Denial of engineering operations
attacks in industrial control systems,” in Proc. 8th ACM
Conf. Data Appl. Secur. Privacy, 2018, pp. 319–329, doi:
10.1145/3176258.3176319.

	 8.	 S. Qasim et al., “Attacking the IEC 61131 logic engine in
programmable logic controllers,” in Proc. Int. Conf. Crit.
Infrastructure Protection, Cham, Switzerland: Springer,
2021, pp. 73–95.

	 9.	 N. Zubair et al., “PEM: Remote forensic acquisition of
PLC memory in industrial control systems,” Forensic Sci.
Int., Digit. Investigation, vol. 40, Apr. 2022, Art. no. 301336,
doi: 10.1016/j.fsidi.2022.301336.

	10.	 A. Adeen, Z. Nauman, Y. Hyunguk, J. Wooyeon, and A.
Irfan, “Gadgets of gadgets in industrial control systems:
Return oriented programming attacks on PLCs,” in Proc.
16th IEEE Int. Symp. Hardware Oriented Secur. Trust, San Jose,
CA, USA, May 2023, pp. 215–226.

	11.	 A. Ghaleb, S. Zhioua, and A. Almulhem, “On PLC net-
work security,” Int. J. Crit. Infrastructure Protection, vol. 22,
pp. 62–69, Sep. 2018, doi: 10.1016/j.ijcip.2018.05.004.

	12.	 X. Qin, K. Mai, N. Ortiz, K. Koneru, and A. A. Carde-
nas, “Cybersecurity and resilience for the power grid,” in
Resilient Control Architectures and Power Systems, C. Rieger, R.
Boring, B. Johnson, and T. McJunkin, Eds. New York, NY,
USA: Wiley, 2022, pp. 201–214.

	13.	 S. Senthivel et al., “SCADA network forensics of the
PCCC protocol,” Digit. Investigation, vol. 22, pp. S57–S65,
Aug. 2017, doi: 10.1016/j.diin.2017.06.012.

	14.	 W. Alsabbagh and P. Langendörfer, “A fully-blind false
data injection on PROFINET I/O systems,” in Proc. IEEE
30th Int. Symp. Ind. Electron., 2021, pp. 1–8, doi: 10.1109/
ISIE45552.2021.9576496.

	15.	 “CISA releases forty-one industrial control systems
advisories,” Cybersecurity and Infrastructure Secu-
rity Agency, Arlington, VA, USA, Dec. 2022. [Online].
Available: https://www.cisa.gov/uscert/ncas/current
-activity/2022/12/15/cisa-releases-forty-one-industrial
-control-systems-advisories

Adeen Ayub is a Ph.D. student at Virginia Common-
wealth University, Richmond, VA 23284-2512 USA.
Her research interests include vulnerability discovery
and exploit development in industrial control systems.
Ayub received a M.S. in cybersecurity from New York
University. Contact her at ayuba2@vcu.edu.

Wooyeon Jo is a postdoctoral researcher in computer
science at Virginia Commonwealth University, Rich-
mond, VA 23284-2512 USA. His research interests
include digital forensics, network security, and cyber-
physical systems. Jo received a Ph.D. in computer
engineering from Ajou University. He is a Member of
IEEE. Contact him at jow@vcu.edu.

Syed Ali Qasim is a Ph.D. candidate at Virginia Common-
wealth University, Richmond, VA 23284-2512 USA. His
research interests include digital forensics and industrial
control systems. Qasim received a B.S. in computer sci-
ence from Lahore University of Management Sciences,
Pakistan. Contact him at qasimsa@vcu.edu.

Irfan Ahmed is an associate professor of computer sci-
ence at Virginia Commonwealth University, Rich-
mond, VA 23284-2512 USA. His research interests
include digital forensics, malware, and cyberphysical
systems. Ahmed received a Ph.D. in computer science
from Ajou University, South Korea. He is a Senior
Member of IEEE. Contact him at iahmed3@vcu.edu.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: SAMSUNG R&D Institute India Bangalore Pvt. Ltd.. Downloaded on May 30,2023 at 16:23:00 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/CSR54599.2022.9850326
http://dx.doi.org/10.1109/CSR54599.2022.9850326
http://dx.doi.org/10.1145/3176258.3176319
http://dx.doi.org/10.1016/j.fsidi.2022.301336
http://dx.doi.org/10.1016/j.ijcip.2018.05.004
http://dx.doi.org/10.1016/j.diin.2017.06.012
http://dx.doi.org/10.1109/ISIE45552.2021.9576496
http://dx.doi.org/10.1109/ISIE45552.2021.9576496
https://www.cisa.gov/uscert/ncas/current-activity/2022/12/15/cisa-releases-forty-one-industrial-control-systems-advisories
https://www.cisa.gov/uscert/ncas/current-activity/2022/12/15/cisa-releases-forty-one-industrial-control-systems-advisories
https://www.cisa.gov/uscert/ncas/current-activity/2022/12/15/cisa-releases-forty-one-industrial-control-systems-advisories
mailto:ayuba2@vcu.edu
mailto:jow@vcu.edu
mailto:qasimsa@vcu.edu
mailto:iahmed3@vcu.edu

