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How Are Industrial Control Systems 
Insecure by Design? A Deeper Insight Into 
Real-World Programmable Logic Controllers

Adeen Ayub , Wooyeon Jo , Syed Ali Qasim , and Irfan Ahmed  | Virginia Commonwealth University

Programmable logic controllers (PLCs) have design features to enable operations, such as real-time 
control of physical processes. These features have weaknesses, making PLCs vulnerable to attacks 
(network/firmware based). We study these features and attacks and suggest security requirements for 
designing a PLC. 

I ndustrial control systems (ICSs) monitor and con-
trol industrial physical processes, such as nuclear 

plants, oil and gas pipelines, traffic lights, etc.1 Figure 1  
presents a typical example of an ICS environment. It 
consists of a control center and a field site. The field 
sites use programmable logic controllers (PLCs), sen-
sors, and actuators to control the physical processes. 
For instance, in the case of a conveyor belt that sorts 
metal and plastic objects, the PLC receives differ-
ent sensor data and then processes these data using a 
control logic to make sure the belt runs and sorts the 
objects accurately. The control center runs ICS ser-
vices, such as a human–machine interface (HMI), con-
trol server, historian, and engineering workstation. The 
HMI shows the current state of the physical process. 
At the same time, the historian keeps logs of the PLC’s 
input and output data for forensic and analytic pur-
poses. The control server communicates with the field 
site over the network. The engineering workstation 
runs the engineering software, which is provided by the 

PLC vendor. A control engineer uses the engineering 
software to download (write) and upload (read) a con-
trol logic program on and from a PLC, respectively, to 
control and maintain the connected physical process. 
The IEC 61131-3 standard defines five languages to 
write a control logic: ladder logic, instruction list, func-
tional block diagram, structured text, and sequential 
flowchart.

PLCs have common design features across differ-
ent vendors to enable engineering operations, such as 
real-time control and monitoring of a physical process, 
use of the scan cycle to run a control logic continu-
ously, etc. The security capabilities are, however, com-
promised and neglected, thereby making the PLCs 
inherently insecure. The vulnerability of PLCs to 
security threats has been a known issue for some time, 
and researchers have highlighted this problem in their 
studies.11 In this article, we focus on common design 
features in PLCs and study how these features have 
weaknesses that make them exploitable. For each fea-
ture, we show attacks exploiting that particular feature. 
For instance, the scan cycle of a PLC is needed to run 
a control logic continuously. This feature is exploited 
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in a direct firmware object manipulation attack, where 
the attacker injects malicious code to the existing 
control logic to make the malicious change effective 
with every scan cycle. The malicious code modifies a 
jump table entry (in the firmware) to manipulate the 
timer function. Finally, we discuss security require-
ments that should be taken into consideration for PLC 
design.

PLCs
PLCs are embedded devices that are programmed to 
automate and control the physical processes in an ICS 
environment.

Figure 2 shows a typical architectural layout of a 
PLC.2 It has input–output (I/O) ports through which 
the physical process is connected. For instance, push 
buttons, sensors, and switches are connected to the 
input ports of a PLC, while the lights, relays, etc., are 
connected to the output ports. It has a firmware as 
well as a hardware component with a random-access 
memory (RAM) and CPU. Some part of the PLC’s 
memory (nonvolatile) is assigned to the control logic 
program, which is written via the engineering software. 
The PLC communicates with the engineering soft-
ware in the form of request/response messages with 
the PLC acting as a server while the engineering soft-
ware acts as a client. Each PLC uses an ICS protocol for 

communication. Some embed their proprietary proto-
cols over well-known protocols, such as Modbus, ENIP, 
and DNP3.

Figure 1. Overview of an ICS. PLC: programmable logic controller; HMI: human–machine interface; PBX: private branch 
exchange; LAN: local area network; MTU: maximum transmission unit; SCADA: supervisory control and data acquisition. 
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Figure 2. All PLCs typically have I/O modules and hardware including 
nonvolatile memory (EEPROM). I/O modules, such as sensors and actuators, 
are attached to perform physical processes. I/O: input–output; EEPROM: 
electrically erasable programmable ROM; RAM: random-access memory; OS: 
operating system. 
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PLC Design Features
PLCs have common design features to enable engineer-
ing operations, including the following. The subsequent 
sections elaborate on them along with their potential 
exploitation.

■■ real-time control and monitoring of a physical process, 
such as controlling the gas pressure in a gas pipeline

■■ user authentication to allow only authorized remote 
access to a PLC

■■ scan cycle to run a control logic repeatedly
■■ remote PLC maintenance through an engineering 

workstation
■■ control logic decompilation by engineering (program-

ming) software to retrieve and decompile a control 
logic from a PLC

■■ support for ICS network protocols to enable communi-
cation between field sites and the control center and 
among PLCs

■■ device operation modes consisting of program, run, 
remote, and test

■■ connection to I/O devices, such as sensors and actuators 
attached to a physical process.

Real-Time Control and Monitoring
A PLC’s primary design requirement is the real-time 
control of changes in a monitored physical process. For 
instance, the Schneider Electric Modicon M221 PLC is 
supposed to control motion at the submillisecond level. 
Any device features that may compromise the real-time 
control are unsuitable for PLC engineering design.

Since ICSs were originally isolated environments 
with no connectivity to the outside world, they were not 
resilient against cyberattacks. In recent years, ICSs are 
increasingly connected to corporate intranets and other 
IT networks to gain economic advantages. However, 
the integration of ICSs and the IT world has exposed 
ICS environments to cyberattacks.

There is a dire need to incorporate cybersecurity 
solutions in ICS devices and networks. However, con-
sidering the legacy nature of ICSs, adding security fea-
tures (such as encryption, message authentication, and 
device memory protection) to a PLC is challenging 
while maintaining the required speed with which a PLC 
operates and responds to changes in a physical process. 
The vendors may choose to upgrade a PLC’s hardware. 
However, this will raise the PLC’s cost and not cover the 
PLCs that are already deployed and functional. These 
PLCs tend to last for decades; replacing them before 
their end of life involves substantial costs.

User Authentication
PLCs use password-based authentication. Engineering 
software can set it up while configuring a PLC. A recent 
study on PLC authentication protocols reveals funda-
mental issues, including shared passwords, one-way 
authentication, and weak encryption and encoding.3 
It involves the PLCs of different vendors, including 
Schneider Electric’s Modicon M221, Siemens’ S7-300, 
Allen-Bradley’s MicroLogix 1100/1400, and Automa-
tionDirect’s CLICK PLC.

Shared Group Password
PLCs authenticate using a single user group that shares a 
password. They do not require identification data, such 
as the username, as part of the authentication process. 
PLCs consider the communicating user as an autho-
rized entity if the user knows the correct password.

One-Way Authentication
PLCs use one-way client authentication. They require 
authentication from the engineering software (client) 
but not vice versa. The PLCs as a server do not authen-
ticate with the engineering software.

Weak Password Encryption on Siemens S7-300
Figure 3(b) shows the weak authentication protocol of 
the Siemens PLC involving a preshared key of one byte, 
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Figure 3. Authentication mechanisms may vary from vendor to vendor, but 
the design issues with each protocol are quite similar.3 (a) Schneider Electrics’ 
Modicon M221 authentication protocol, (b) Siemens’ S7-300 authentication 
protocol, (c) Allen-Bradleys’ MicroLogix 1400 (Enhanced Password 
Security) password set/reset protocol, and (d) AutomationDirect’s CLICK 
authentication protocol.
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“K,” encrypting an 8-byte password. The encryption 
algorithm consists of the following steps. 

1.	 First, all eight characters of the password are passed 
through an encoder that encodes each character 
according to a substitution table. Figure 4 shows the 
encoded values for a few characters.

2.	 Next, the first two encoded values are XORed 
with K to produce E1 and E2, while the rest of the 
characters are XORed with K and E(i-2) to pro-
duce Ei, where i can be a whole number from 3 to 
8. The encryption algorithm is quite weak. It does 
not have sufficient diffusion and confusion layers. 
An attacker can recover the one-byte key from just 
one plaintext/ciphertext pair. The substitution is 
conducted at a byte-by-byte level (character by 
character), making it trivial to reverse engineer the 
substitution table.

The Siemens S7-300 PLC consists of different 
blocks, such as an organization block, a functional 
block, a data block, and a system data block (this block 
contains the encrypted password). An attacker sends 
a read request for the system data block to capture the 
encrypted password. Using the predetermined encryp-
tion algorithm, the attacker can decrypt the password.

Weak Password Encoding on Modicon M221
The Modicon M221 employs password encoding 
during the authentication process to hide the pass-
word hash in transit. However, the encoding scheme 
is weak and can reveal the hash to the attacker upon 
eavesdropping. Figure 3(a) shows the protocol using 
two masking bytes, each of size one byte. It XORs 
both masking bytes with each byte of the SHA-256 
password hash. Since the masking bytes and encoded 
password hash are exchanged between a PLC and 
engineering software, the attacker can eavesdrop and 
decode the hash.

Denial of Password Authentication Service on 
Allen-Bradley MicroLogix 1400
The password set/reset protocol of the MicroLogix 
1400 is shown in Figure 3(c). The engineering software 
first sends an authentication request to which the PLC 
responds with a random 20-byte challenge. The user 
then sends a 40-byte response, with the first 20 bytes 
being the old password encrypted with the challenge 
and the last 20 bytes being the value of the new pass-
word encrypted with the challenge. The PLC checks 
the value of the first 20 bytes received to confirm if 
the entered password was correct. If it is, the authen-
tication is successful, and the password is updated to 
a new value. An attacker can intercept this network 

traffic and update the value of the last 20 bytes with a 
random value. Since the first 20 bytes were unchanged, 
the password set/reset operation is successful, and the 
new password is set to a random value unknown to the 
legitimate user.

Poor Password Management on CLICK PLC
CLICK’s authentication protocol in Figure 3(d) has a 
number of problems. 1) The password is transmitted in 
plaintext. 2) The PLC has a global state that indicates 
if it is authenticated. So if a legitimate user is success-
fully authenticated, it allows all other devices to com-
municate with it without authentication required. 3) 
The PLC stores the last entered password in credential 
stores that can be accessed by sending a read request to 
these stores.

Scan Cycle of Control Logic
A scan cycle runs a control logic continuously and 
repeatedly to ensure that a connected physical pro-
cess does not halt at any given time. In each cycle, a 
PLC gathers data from input devices, such as sensors, 
and runs the control logic program while updating 
the output data associated with actuators to control a 
physical process.

Engineering workstations can update a control logic 
in a PLC remotely. This feature inherently enables 
remote code injection, allowing attackers to append the 
control logic with malicious code. The scan cycle takes 
care of the execution of the attacker’s code to target the 
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Figure 4. The encryption algorithm of the Siemens S7-300 has a scheme that 
performs XOR with key (K) after encoding. Because of the weak scheme of the 
encryption algorithm, the security design of cheap PLCs is insufficient, so that 
even the encryption table can be identified through reverse engineering.
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PLC’s memory regions that are inaccessible through 
ICS protocols. Following are two examples; one targets 
the firmware jump table, while the other manipulates a 
PLC stack for return-oriented programming (ROP).

Direct Firmware Object Manipulation
Direct firmware object manipulation (DFOM) targets 
a firmware data structure to perform an attack. For 
instance, the M221 PLC maintains a jump table con-
taining the addresses of the firmware’s built-in func-
tions, such as the timer and counter used by the control 
logic.9 DFOM compromises a control logic by target-
ing a function in the jump table. Specifically, it modifies 
the jump table to hijack the timer function of a control 
logic that turns on a light after a delay of 3 s. DFOM first 
injects a malicious payload for the timer (which disables 
the delay in turning on the light) in the on-chip RAM 
region of the PLC and then modifies the jump table 
with the address of the malicious timer code.

ROP
ROP is an exploitation technique that uses gadgets 
in a device’s memory to run malicious code.10 A gad-
get is a block of machine instructions that ends with a 
’return’ instruction. An attacker populates the stack with 
the memory addresses of gadgets to execute them in a 
sequence forming a malicious code.

ROP on a PLC is a possible ICS attack and is dif-
ferent from ROP attacks in the IT world. It does not 
require taking administrative privileges (such as getting 
a shell) or complete control of the target device. Instead, 
the attacker needs a set of gadgets that ultimately 
manipulate the output ports of a PLC to sabotage the 
connected physical process. For example, in the case of 
PLCs that use the RX Renesas architecture, register R0 

is the stack pointer, R12 maps to input ports, and R13 
maps to output ports of a PLC. Figure 5 shows a few 
gadgets that manipulate the value of the R13 register. 
An attacker can use these gadgets to update the value of 
a PLC’s output ports, affecting the correct functioning 
of the connected physical process.

The other differences include installing gadgets in 
the stack without user input or buffer overflow and 
ensuring that the attack runs in each scan cycle and 
not once when an attacker installs the gadgets. Our 
successful ROP attack requires an initial attack vec-
tor involving appending a small stack modification 
code (which modifies the contents of the stack with 
the attacker’s gadgets) to the existing control logic. As 
the gadgets execute, they are removed from the stack. 
However, the stack modification code repopulates the 
stack in each scan cycle when it runs along with the 
original control logic.

Remote PLC Maintenance
A control engineer uses the engineering workstation 
to configure and update a PLC configuration remotely, 
including network and protocol configurations and 
control logic. Similarly, the attacker can target a control 
logic and inject malicious code, as discussed in the last 
section. However, since most PLCs run different con-
trol logics, targeting a large number of PLCs requires an 
automated infection process that takes into account the 
current control logic in a target PLC. Further, instead 
of modifying the original control logic, the attacker can 
be stealthy and download a malicious control logic to a 
separate PLC memory region often accessible through 
ICS protocols, such as the I/O data region.

Automated Control Logic Infection
CLIK automates the infection process in four phases,5 
as shown in Figure 6. The first step bypasses PLC 
authentication to retrieve an original control logic from 
a PLC. PLCs employ password-based authentication 
mechanisms that are often weak and prone to subver-
sion.3 The second step decompiles the control logic (in 
machine instructions) to a high-level source code in the 
instruction list, ladder logic, or other IEC 61131-3 lan-
guages. In the third step, CLIK uses a rule-based mali-
cious logic generator to add malicious functionality to 
the original control logic, which is then compiled and 
transferred to the PLC.

The fourth and final step is to conceal the infection 
from the control engineer. CLIK utilizes a prebuilt vir-
tual PLC that intercepts the network traffic between 
the engineering workstation and a target PLC. When a 
control engineer requests an upload operation from the 
PLC to read the infected program, the virtual PLC sends 
the original control logic initially stolen from the PLC.
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Figure 5. Unlike typical IT, where data execution attacks, such as ROP attacks, 
are widely known, most PLCs are not designed to defend against them. All 
gadgets are indexed from memory to exploit the ‘return’ instruction. This figure 
shows two gadgets in the memory that can be used to construct a control logic 
that turns on a light if a certain push button is pressed.
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Data Execution Attack
PLCs do not employ data execution prevention 
(DEP), allowing attackers to execute any memory 
block.4 The attacker exploits it to inject malicious 
control logic into memory blocks accessible through 
an ICS protocol. Specifically, the attacker targets the 
memory regions commonly read and written by ICS 
services to avoid firewall rules. Considering that the 
HMI reads I/O data periodically, the attacker trans-
fers a malicious control logic in small chunks to the 
PLC’s data blocks and then redirects the system con-
trol flow to execute it (as shown in Figure 7). For 
instance, the M221 PLC stores the base address of 
the control logic in the configuration block (shown in 
Figure 8), which can be modified to run the code in 
the data block.

Control Logic Decompilation
Engineering (programming) software has a built-in 
decompiler integrated with the upload functionality to 
retrieve a control logic from a PLC and then decompile 
it to one of the IEC 61131-3 languages, such as ladder 
logic or structured text. The upload functionality sup-
ports an essential engineering operation to examine 
and update a PLC’s control logic. When an attacker 
modifies the control logic in a PLC, it also disables the 
decompilation capability to avoid exposing the mali-
cious control logic. The attacker achieves this by chang-
ing the header values and machine instructions of the 
control logic program.

Denial of Engineering Operations Attack
Denial of engineering operations (DEO) attacks7 
subvert the engineering software from acquiring or 
uploading an infected control logic in a PLC. The 
control logic runs successfully in the PLC, but it fails 
to perform the upload function, as shown in Figure 9. 
For example, in the case of Allen-Bradley’s MicroLogix 
1400, the attacker can craft and download a malicious 
control logic on the PLC. This can be done by simply 
adding an additional rung before the last rung in a lad-
der logic program at the byte-code level. The addition 
of one rung changes the content and size of control 
logic files including the configuration, data files, etc. 
The addition of one rung at byte code makes a discrep-
ancy between the actual control logic and its metadata 
(configuration file). Since engineering software relies 
on the configuration file/metadata to recompile the 
binary control logic into a higher level representation, 
it is unable to acquire the control logic from the PLC 
memory, but it can still run on the PLC. In this way, 
the attacker can develop a malicious control logic that 
works on the actual PLC but crashes the engineering 
software on upload.

Control Logic Obfuscation Attack
This attack6 obfuscates a control logic code to cause 
a discrepancy in the engineering software’s decom-
pilation process. Specifically, the attacker rewrites a 
control logic program using machine instructions that 
are not aligned with the engineering software decom-
pilation. However, since the PLC executes machine 
instructions, it runs the obfuscated control logic suc-
cessfully. When a control engineer tries to acquire 
the obfuscated code using engineering software, the 
software fails to decompile it. This attack was demon-
strated on two PLCs: the Modicon M221 and Siemens 
S7-300.

Support for ICS Network Protocols
PLCs communicate with the engineering software 
through request/response messages. The engineering 
software (the client) sends a request, while the PLC 
(the server) generates a response. PLCs are required 
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to support various ICS protocols to provide heteroge-
neous communication and functions.

For example, Allen-Bradley’s MicroLogix 1400 sup-
ports protocols such as ENIP, DNP3, and Program-
mable Controller Communication Commands, which 
is a proprietary protocol. If these protocols are not 
encrypted, they can be targeted by attackers to initiate 
communication with the PLC and launch an attack with 
reverse engineering.13 The recent attack targets on ICSs 
(Industroyer 2.0) are also based on a deep understand-
ing of ICS protocols. The following examples further 
illustrate the manipulation of ICS protocols.

Fragmentation and Noise Padding Attack
In a fragmentation and noise padding attack, an attacker 
subverts network detection for malicious code by trans-
ferring control logic in multiple packets byte by byte. 
This attack exploits the fact that deep packet inspection 
techniques cannot detect attack packets that contain 
significantly small-sized attack payloads because these 
packets tend to blend in with normal packets.

Figure 10 shows a fragmentation and noise pad-
ding attack. In each packet, the attacker sends one byte 
of control logic followed by noise, which can easily be 
ignored by network detection tools. To ensure that 
the target PLC does not use noise and only executes 
the control logic code, the start location of each write 
request increments by one instead of incrementing by 
the size of the last write request. This way, in each write 
request the previously written noise is overwritten with 
the next control logic byte. This process goes on until 
the entire control logic is written on the PLC memory.

Man-in-the-Middle Attack
Man in the middle (MITM) is a well-known threat in the 
IT as well as the ICS industries. It manipulates the mes-
sages in transit by intercepting the traffic between two 
legitimate parties. The following two attacks make use 
of the MITM approach to hide an infected control logic 
from a control engineer who tries to retrieve it via engi-
neering software. An attacker, however, needs to reverse 
engineer the communication protocol to know the 
semantics and change the messages in transit so they are 
accepted by the PLC as well as the engineering software.

1.	 DEO 1: This attack intercepts the communication 
between the engineering software and the PLC.7 
The attacker first replaces part of the ladder logic 
being downloaded with infected logic. Then, upon 
an upload request from the engineering software, 
the attacker intercepts and manipulates the pack-
ets in transit and changes the infected control logic 
with the legitimate one to make sure the infection 
remains hidden from the control engineer.

Figure 9. Rockwell Automation’s RSLogix Micro Starter pops up the “Upload Failed!” 
message with an unknown error from the decompiler as a result of a DEO attack.
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2.	 DEO 2: In this attack, the attacker intercepts the 
network traffic and replaces part of the ladder 
logic instructions with noise as it is being trans-
ferred from a PLC to programming software in an 
engineering workstation.7 This infection basically 
causes the engineering software to crash.

Device Operation Modes
Most PLCs have different modes, such as program, run, 
remote, and test modes. These modes represent dif-
ferent states in the PLC, and each mode allows certain 
PLC operations. For example, in run mode, the PLC 
disables remote memory read/write operations and 
focuses only on executing the control logic. Similarly, if 
the control engineer wants to make any changes to the 
PLC memory, that is, upload or download control logic, 
the PLC has to be in program mode. In program mode, 
the PLC halts the execution of control logic and allows 
the user to make read/write operations on the PLC 
memory. Some PLCs also have a test mode. This mode 
is used to test the program execution before allowing 
the PLC to operate real-world outputs.

The user can change the mode of a PLC remotely 
from the engineering software. Upon the user’s action, 
the engineering software sends a command message to 
the PLC to go to the desired mode. Since these modes 
can change the state of the PLC and control the execu-
tion of control logic as well as the access to PLC mem-
ory, they can be exploited by the attacker to sabotage 
the working of an ICS.

Control Logic Engine Attack
A control logic engine attack8 is different from typical 
control logic injection attacks in that it targets the logic 
engine (responsible for running the control logic) of a 
PLC by exploiting the PLC modes instead of transfer-
ring a malicious control logic. In this attack, the attacker 
tries to put the PLC in a state where it is unable to exe-
cute the control logic written on it. The attacker can 
capture the network communication between the PLC 
and the engineering software, identify the messages 
responsible for the mode change, and replay these mes-
sages to the targeted PLC. This is possible because the 
engineering software sends the command message to 
change the PLC mode. Network monitoring to notice 
a mode change is now a well-known path to inter-
rupt communication between PLCs and engineering 
workstations.11

Connection to I/O Devices
As shown in Figure 2, PLC I/O is discrete I/O that 
in most cases is connected through I/O modules on 
the PLC. Since I/O is an analog device that generates 
signals, an ICS uses I/O modules to collect data and 

transmit them to the PLC based on serial communica-
tion protocols for industrial systems. For example, Allen 
Bradley’s Flex I/O and Siemens’ ET 200 series are rep-
resentative I/O modules. The I/O modules use indus-
trial serial protocols to transfer data to the PLC module. 
These design features make a PLC vulnerable to attacks 
that attempt to corrupt the I/O module by manipulat-
ing its data. For instance, it is possible to insert false 
(manipulated) I/O data into an injection attack in a 
fully blind situation.14 Since this attack manipulates data 
representing I/O controllers and I/O devices, it impairs 
the operation of I/O modules and PLCs. Manipulating 
I/O data successfully shows that these I/O data are not 
being properly validated.

Discussion
Traditionally, ICSs operated in isolation, providing a 
secure environment for critical infrastructure. However, 
with the rise of connectivity to corporate networks and 
the Internet, these systems have become vulnerable to 
cyberthreats.12 To address this, organizations like the 
Cybersecurity and Infrastructure Security Agency and 
the ICS Cyber Emergency Response Team are making 
continuous efforts, such as releasing new advisories.15

This section will discuss security requirements for 
PLCs in ICSs. Some may act independently as counter-
measures against specific attacks, but the mutual ben-
efit is more significant when they are applied together. 
Completely redesigning the PLCs would be one of the 
solutions, but this approach entails a high cost and 
potential backward compatibility issues. The limitation 
arising from the PLC design, which prioritizes avail-
ability above all else, instills fear of change among users 
and vendors.3

Although PLC manufacturers somewhat fulfill these 
security requirements, it is important for them to high-
light these measures to end users. For instance, Rock-
well Automation’s Logix 5000 satisfies some of the 
requirements outlined next, but it is still necessary to 
emphasize them as the user may overlook them.

User Management
Typically, there are multiple users who manage PLCs 
in the field. In modern IT, it’s a standard practice to 
independently identify and authorize each user for secu-
rity purposes. However, PLCs entrust the control 
center with these security essentials, making them vul-
nerable if an unauthorized individual gains access to 
the control center.

Source Verification
The PLC accepts messages from what appears to be a 
legitimate source without verifying the source. Source 
verification is not applied to both the node and the code, 
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even if the message contains the control logic source 
code. Engineering software often supports a code veri-
fication function, but the PLC rarely verifies the trans-
mitted source code. Suppose all nodes go through an 
appropriate authentication and the transmitted con-
trol logic can be verified; then it is challenging for an 
attacker to induce malicious actions in the PLC.

Standard Cryptographic Algorithms
Authentication without confidentiality is vulnerable; 
thus, widely known authentication methods employ 
encryption. However, PLCs cannot easily apply the 
application of standard data cryptographic algorithms, 
such as public-key infrastructure, which requires a 
trusted certificate authority. Although there may be an 
initial financial burden for PLC vendors, it is a better 
investment in the long run compared to the potential 
damages and risks that may occur from weak authenti-
cation methods.

Memory Access Control
Since PLCs are configured and programmed using engi-
neering software, they have the privilege to remotely 
read and write data on the PLC memory. However, 
access to the sensitive area in a nonvolatile memory 
should be verified with access control to secure the con-
trol logic of the PLC. Some PLCs even provide access 
rights to registers corresponding to stack pointers, 
making it essential to have memory access control that 
requires a separate procedure to access sensitive mem-
ory regions.

DEP
To protect against attacks like CLIK and control logic 
injection, PLCs must enforce protection schemes like 
DEP that prevent an attacker from running executable 
code in the memory. With protection schemes like 
DEP, an attacker will not be able to execute an injected 
malicious code. DEP can be implemented in both soft-
ware and hardware. Software-based DEP is typically a 
feature of the operating system, while hardware-based 
DEP requires support from the processor. Implement-
ing DEP in PLCs can be challenging because of resource 
constraints, limited operating system support, compat-
ibility issues, and increased costs.

Key Management
In the field of key management, it is widely recognized 
that all keys should be updated periodically as a secu-
rity measure. Even if users do not utilize the password 
change function, there should be minimal effort required 
to convert the internally encoded result. It is imperative 
that vendors improve the default key management sys-
tems to ensure an appropriate level of security.

P LCs provide real-time control of changes in a con-
nected physical process and directly control criti-

cal infrastructure, making them attractive targets for 
attackers aiming to sabotage physical processes. Imple-
menting cybersecurity features in PLCs, such as user 
management, source verification, and cryptographic 
algorithms, often involves tradeoffs between the pri-
mary requirement of real-time control and the need for 
security. For example, introducing cryptographic meth-
ods can potentially impact the real-time performance 
of the system as both the PLC and the communicating 
entity will need to encrypt and decrypt messages. The 
degree of impact will depend on the specific encryption 
method utilized. Additionally, implementing memory 
access control and DEP measures can further enhance 
the security of PLCs. However, these measures can also 
introduce new challenges to vendors, such as bypassing 
authentication, which renders the security feature inef-
fective. The security features in current PLCs are insuffi-
cient and often contain many exploitable vulnerabilities 
due to bad design and poor implementation choices.

Therefore, it is crucial to carefully consider the trad-
eoffs between security and system performance when 
designing and implementing security features in PLCs. 
This article explored the different operational features 
of various PLCs and further discussed how attackers 
can exploit them to launch an attack on ICS. By under-
standing these tradeoffs and potential vulnerabilities/
solutions, we can develop more effective security mea-
sures to protect critical infrastructure while maintaining 
the indispensable design requirements. 
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