
Control Logic Obfuscation Attack in Industrial
Control Systems

Nauman Zubair∗, Adeen Ayub†, Hyunguk Yoo∗, Irfan Ahmed†
∗ Department of Computer Science, University of New Orleans, USA

† Department of Computer Science, Virginia Commonwealth University, USA
∗{nzubair@my.uno.edu, hyoo1@uno.edu}, †{ayuba2, iahmed3}@vcu.edu

Abstract—Industrial control systems (ICS) are critical for
safe and efficient operations of critical infrastructures such as
power grids, pipelines, and water treatment facilities. Attackers
target ICS, mainly programmable logic controllers (PLC), to
sabotage underlying infrastructure. A PLC controls a physical
process through connected sensors and actuators. It runs a
control-logic program that specifies monitoring and controlling
a physical process and is a common target of a cyberattack.
A vendor-provided proprietary engineering software is typically
used to investigate the infected control logic. This paper shows
that an attacker can use control-logic obfuscation as an anti-
forensics technique to hinder the investigations and incident
response. The control-logic obfuscation subverts the engineering
software’s decompilation function; therefore, we call it a denial-
of-decompilation (DoDe) attack. The DoDe attack exploits a
fundamental design principle of creating compiled control logic in
engineering software, thereby affecting the engineering software
of multiple vendors in the industry.

Index Terms—Control-logic attacks, digital forensics, industrial
control system (ICS), programmable logic controller (PLC)

I. INTRODUCTION

Industrial control systems (ICS) are parts of critical infras-
tructure that monitor and control physical processes such as
power grids, oil and gas pipelines, and nuclear facilities. In a
typical setting of ICS, programmable logic controllers (PLC)
control a physical process at a field site, while supervisory
applications at a control center are used to monitor the process
and configure the PLCs over a network. Engineers at the
control center use vendor-provided programming software,
called engineering software, to program control logic, which
defines how a PLC controls a physical process.

Previous security incidents on ICS (e.g., Stuxnet [1] and
Triton [2]) and academic studies [3]–[6] have shown that the
control logic of a PLC is vulnerable to malicious modification,
called control-logic attacks [7]. In investigating control-logic
attacks, the current state-of-the-practice heavily relies on the
engineering software to obtain and analyze the control logic
from a suspicious PLC. Especially, without the aid of the
engineering software’s decompilation function, it is hard to
reveal the semantics of the attacker’s control logic. Unlike the
IT systems, the ICS environment largely involves proprietary
network protocols, undocumented binary formats, and highly
diversified designs and implementations, making it difficult
for the digital forensic community to develop third-party

tools to acquire and analyze forensic artifacts from ICS-
specific embedded devices. In particular, ICS vendors typically
employ proprietary compilers to translate control logic in a
PLC programming language (defined in IEC 61131-3) into
bytecode or machine code, generating a control-logic binary
in an undocumented format, which may call proprietary library
functions. These heterogeneous and closed nature of ICS make
it difficult for forensic investigators to analyze the control
logic directly in an assembly language or develop a third-party
decompiler. Although Falliere [8] created the JEB decompiler
for Siemens S7 PLCs and Keliris et al. [9] developed ICSREF
for CODESYS, developing a third-party decompiler requires
painstaking manual reverse-engineering for each PLC model
or platform.

In this paper, we argue that the fundamental design principle
of engineering software in compiling and decompiling control
logic makes it vulnerable to control-logic obfuscation. The
primary purpose of control-logic obfuscation in ICS is to delay
the digital forensic investigations and incident response by
subverting the engineering software’s decompilation function;
therefore, we call it the denial-of-decompilation (DoDe) attack
in this paper. We evaluate the DoDe attack on two major PLC
manufacturers’ PLCs (i.e., Schneider Electric Modicon M221
and Siemens S7-300) and their engineering software (i.e.,
SoMachine Basic and TIA Portal). In addition, we empirically
show that the DoDe attack can also evade a machine learning-
based control-logic detection [10] that detects network packets
containing control-logic binaries.

The rest of the paper is organized as follows. Section II
provides the background and related work. Section III presents
the DoDe attack, which exploits engineer software’s design
principle for compiling and decompiling control logic. Sec-
tion IV shows the evaluation result, followed by Section V,
where we discuss the implications of the attack and suggest
defenses. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Programmable Logic Controllers

Programmable logic controllers (PLC) are embedded sys-
tems used in various industries for automatic control of
physical operations. A PLC has many input/output ports that
can be wired with sensors and actuators to control various
physical processes. For example, a single PLC can control the
entire onsite generation of sodium hypochlorite at an offshore978-1-6654-9952-1/22/$31.00 ©2022 IEEE

oil platform (to prevent the biofouling of intake pipes) with
connected sensors (e.g., flow transmitters, level transmitters)
and actuators (e.g., flow control valves, pumps).

The IEC 61131-3 standard defines five PLC programming
languages: ladder logic, function block diagram, structured
text, instruction list, and sequential function chart. Since these
languages are domain-specific, they have specialized charac-
teristics for the ICS domain. For example, a PLC program
(or control logic) written in the ladder logic language is
like a circuit diagram (as shown in Figure 2). PLCs can be
programmed using a vendor-specific integrated development
environment (IDE), commonly called engineering software.
For example, Siemens PLCs are programmed with TIA Por-
tal, Schneider Electric PLCs with SoMachine, Allen-Bradley
PLCs with RsLogix 500 and Studio 5000 Logix Designer.
Engineers at a control center use the engineering software to
write and compile control logic, and then download it to a PLC
over a network. The same software is also used to upload the
control logic from the PLC and show the decompiled source
code using its built-in decompiler.

B. Real-world Control-logic Attacks

Cyberattacks on PLCs may induce damage in the physical
world. The attackers often aim to modify the control logic of a
PLC, thereby negatively operating the underlying physical pro-
cess. For example, Stuxnet [1] eventually downloads to target
PLCs (Siemens S7-315 and S7-417) a malicious control logic
that manipulates the rotor speed of centrifuges periodically
from 1,410 Hz to 2 Hz to 1,064 Hz, which inflicted irreparable
physical damage on about 1,000 centrifuges at Iran’s nuclear
facilities [1].

The Triton (a.k.a. Trisis or HatMan) malware [2], discovered
at a Saudi Arabian petrochemical plant in 2017, targeted
Schneider Electric Triconex Tricon 3008 controllers, which
are designed to prevent hazards through a failsafe mechanism
(e.g., safety shutdown) when abnormal conditions are present.
The targeted controller type is a safety PLC that operates
independently of a primary process control system, serving
as a safety net for workers, machinery, and the environment
when the primary control system fails. Therefore, the failure
of a safety PLC can directly contribute to a catastrophic
industrial disaster, including the loss of lives. The attack in
2017 [2] caused the targeted petrochemical plant to experience
unexpected shutdowns triggered by infected controllers. Triton
represents the first malware designed to attack industrial safety
systems.

C. Use of Engineering Software in Forensic Investigation

The attacker’s control logic codifies her malicious intention
to the physical world; hence a high priority needs for under-
standing the control logic in the digital forensic investigation.
In the current state-of-the-practice, engineering software plays
a critical role in digital forensics and incident response against
ICS cyberattacks. Unlike forensic investigations on typical IT
systems, decompilation is often an essential step to understand
the semantics of the attacker’s control-logic binary since the

the ICS environment is highly heterogeneous and exclusive. In
ICS-specific embedded devices, their binary formats and the
firmware are often proprietary. Moreover, the library/system
functions called in the control-logic binaries and the infor-
mation of a PLC’s memory-mapped I/O are generally not-
well documented. The investigators may consult with PLC
manufacturers, but it will significantly delay response time,
causing extended damage to the physical world.

The built-in decompiler of engineering software allows the
forensic investigators examine the acquired control logic in
a high-level PLC programming language (e.g., ladder logic,
functional block diagram) that can be readable by the ICS
engineers. According to the sources where the control logic is
obtained, there are two approaches to analyze it. If the control
logic is running on a PLC, the engineering software can
directly upload the control logic from the PLC and decompile
it. On the other hand, if it is acquired from a network/memory
dump, the investigator can use a virtual-PLC (such as [3]
and [11]) that replays the control logic in a conversation with
engineering software.

D. Denial of Engineering Operation (DEO) Attacks

Senthivel et al. [12] defined engineering operation as “a
continuous cycle of developing and updating the PLC control
logic in response to changing operational requirements in
ICS”. They presented three attack scenarios, referred to as
denial-of-engineering (DEO) attacks, in which an attacker can
interfere with the normal engineering operation. The primary
goal of the DEO attacks is to subvert engineering software’s
capabilities to acquire the actual control logic from an infected
PLC.

The denial-of-decompilation (DoDe) attack (presented in
Section III), which disables the engineering software’s decom-
pilation capability, can be considered as a specific method to
implement the DEO attacks. More specifically, it can be used
for the third DEO attack scenario where an attacker creates a
well-crafted control logic that runs on a PLC successfully but
crashes the engineering software when attempting to acquire
the control logic from the PLC [12]. They demonstrated the
attack by creating a malformed control-logic that exploits an
inconsistency of input validation between engineering software
and a PLC. In their study, Rockwell Automation’s RSLogix
500 (the engineering software) refused to decompile a control-
logic when integrity checks failed, while the Allen-Bradley
MicroLogix 1400 PLC ran the logic successfully.

Their approach, however, needs to find a malformed in-
stance that can trigger the discrepancy between engineering
software’s and the PLC’s input validation, which is by no
means a trivial task; in some cases, such inconsistency may
not exist at all. In addition, PLC manufacturers can quickly
fix the problem; likewise, investigators can easily correct the
mismatched integrity-check values in a suspect control logic.

III. DENIAL-OF-DECOMPILATION ATTACK

This section proposes a new approach for the DEO attacks,
referred to as the denial-of-decompilation (DoDe) Attack,

Engineering
Software

Decompiler

PLC

Obfuscated
Control
Logic

Retrieve control logic

(Control Center) (Field Site)

Attacker

Install obfuscated (malicious) control logic

Fail

Fig. 1. An overview of the denial-of-decompilation (DoDe) attack in ICS

which exploits a fundamental design principle of engineer-
ing software’s compilation/decompilation. Figure 1 shows an
overview of the DoDe attack. An attacker installs an obfus-
cated control logic into a PLC and leaves the network. Then,
when a forensics investigator attempts to acquire the control
logic from the PLC using engineering software, the attempt
fails since the software’s decompilation function is not defined
under the obfuscated control logic.

In existing control-logic attacks, an attacker prepares her
malicious control logic using the engineering software of a
target PLC—i.e., the attacker’s control logic uses the same
compilation choices of the legitimate engineering software.
On the other hand, the DoDe attack subverts the software’s
decompilation through control-logic obfuscation that takes
different compilation choices.

A. Compilation and Decompilation in Engineering Software

We can define a compilation as a multi-valued function τ ,
given the source language L1 and the target language L2. For
each string (source program) x ∈ L1,

τ : L1 7→ P(L2); τ(x) = {y ∈ L2 : sem(x) = sem(y)}

where sem(x) represents the semantics of the program x.
Note that the compilation is multi-valued since usually some
statement of a high-level (source) language can have several
different realizations in a low-level (target) language. However,
if we consider a particular compiler f , the compilation is
single-valued, because the compiler selects exactly one out
of the many possible low-level implementations of the source
program [13].

f : L1 7→ L2; f(x) = y s.t. y ∈ L2 ∧ sem(x) = sem(y)

In general, a compilation is not injective because more than
one source programs may be translated into the same target
program. Therefore, in typical IT systems, a decompilation
(reconstructing a source program from a target program) is not
the inverse of a compilation; compilation and decompilation
are independently designed and do not necessarily make the
same design decisions for their mappings [13].

On the other hand, the compilation in engineering software
is, in general, injective—namely, two different control-logic
source programs are always translated into two different
target programs. There is an evident advantage in this design
principle. Engineers at a control center often need to examine

or debug the control logic running in a PLC, which requires
the original source program. We can make this possible in
two ways. The first way is to transfer the binary and source
code together when updating the control logic of a PLC.
However, this approach wastes limited PLC memory resources
to store the source code. Moreover, the source code can be
exposed during transmission since most ICS protocols do not
support encryption. The second way is to make the compilation
function invertible; given a compiler f , we define a decompiler
g such that:

g : f(L1) 7→ L1; g(f(x)) = x for all x ∈ L1

We exploit this design principle in compilation and de-
compilation to achieve our attack goal (i.e., install into a
PLC a control logic that cannot be decompiled in engineering
software). Since the domain of a decompiler g is restricted to
f(L1), which is a strict subset of L2, given a source program
x ∈ L1, we can find a target program y such that y ∈ τ(x)
but y /∈ f(L1). In other word, the target program y has the
same semantics as the source program x, but it can never be
generated by the particular compiler f . The function g cannot
decompile the target program since it is not defined for y.

B. Control-logic Obfuscation

We can find such a target program y (y ∈ τ(x) but y /∈
f(L1)) through obfuscation, which is a common practice in
malware development in the IT domain. We can define an
obfuscation as a multi-valued function δ:

δ : f(L1) 7→ P(L2); δ(f(x)) = {y : y ∈ τ(x) ∧ y ̸= f(x)}

In other words, given a target program f(x), which is the
output of a particular compiler f on an input source program
x, the obfuscation produces a set of morph y, which is a
target program whose semantics is the same as f(x) (and so
as x), but whose realization is different. Note that a morph
y ∈ δ(f(x)) could be a member of f(L1) by chance, meaning
y is defined under a decompiler g. Then, g(y) will produce x′

such that sem(x) = sem(x′) and x ̸= x′ (x and x′ cannot be
the same since the compilation function is injective). We can
test whether a morph can be used for the DoDe attack using
the decompiler g (in practice, we use engineering software for
the test). If the decompiler generates an error, we can use it,
otherwise select another morph from δ(f(x)).

To implement a particular obfuscator δ′(f(x)) ⊆ δ(f(x)),
we can borrow common obfuscation strategies that have been
extensively studied in the IT domain. However, the purposes
are somewhat different. In the IT domain, attackers often
obfuscate their malware greatly, and performance is a low
priority. On the other hand, a PLC and its physical pro-
cess operate within the real-time constraint; thus, complex
obfuscation techniques (e.g., emulation-based, return-oriented
programming), which can significantly increase the execution
time, may not be suitable. We argue that simple obfuscation
is enough for our purpose to hinder incident response due
to the reasons mentioned in Section II—it is challenging to
analyze control-logic binary even without obfuscation (due

XIC

%I0.1

Rung 0

XIC

%I0.2
Rung 1

OTE

%Q0.1

OTE

%Q0.0

Fig. 2. An example control-logic source (Modicon M221)

to the heterogeneity and exclusiveness) if a decompiler is
unusable. The following section presents two case studies
that perform the DoDe attack through simple instruction-level
obfuscation on two major manufacturers’ PLCs.

IV. EXPERIMENTAL EVALUATION

We have evaluated the DoDe attack on two different
manufacturers’ PLCs: Schneider Electric Modicon M221 and
Siemens S7-300. We utilized the well-known instruction-
level obfuscation strategies such as garbage-code insertion,
equivalent-instructions substitutions [14]. Given a control-
logic source program, we first compiled it using engineering
software, and extracted the control-logic binary. Then, we
disassembled the binary into an assembly code to which
obfuscation was applied, and assembled back to machine
code. The obfuscated control-logic binary was transferred and
installed into a PLC, then we checked that the control logic
ran successfully in the PLC while engineering software failed
to decompile when attempting to acquire the control logic
from the PLC. In addition, although it is not the primary
goal of the DoDe attack, we conducted a separate experiment
to see whether the obfuscated control logic can also evade
Shade [10] which is a ML-based control-logic detection.

A. Subverting Decompilation in Engineering Software

Attack on Modicon M221 PLC. Our first subject were the
Schneider Electric Modicon M221 PLC (firmware v1.6.0.1)
which runs on a Renesas RX630 microcontroller, and So-
Machine Basic (v1.6), the engineering software. We uti-
lized a toolchain1 provided by Renesas to perform assem-
bling/disassembling for the RX architecture. The obfuscated
control logic was transferred into the PLC using a rouge
clients [4].

Figure 2 shows a control-logic source program. The XIC
(examine-if-closed) instruction on the first line (Rung 0)
examines a PLC’s digital input %I0.1 (input port 1 on slot
0), and if the bit is set, then the connected OTE instruction
is executed, which sets the digital output %Q0.0 (output port
0 on slot 0). Then, the next line (Rung 1) is executed in a
similar way, and then over again for each scan cycle.

Table I represents the original target program (produced
by SoMachine Basic) for the example source program, and
its morphs generated through instruction-level obfuscations.
In the original program, BTST #1,r12 examines bit 1 (i.e.,

1https://gcc-renesas.com/

TABLE I
ORIGINAL AND OBFUSCATED PROGRAMS (M221)

Original Morph-1 Morph-2

BTST #1, r12
BMC #0, r13
BTST #2, r12
BMC #1, r13
RTS

TST #2, r12
BMNE #0, r13
TST #4, r12
BMNE #1, r13
RTS

MOV.L #0, r1
BTST #1, r12
BMC #1, r1
CMP #1, r1
BMGE #0, r13
MOV.L #0, r1
BTST #2, r12
BMC #1, r1
CMP #1, r1
BMGE #1, r13
RTS

the second to the LSB) of the r12 register which reflects the
digital inputs of the PLC; namely, it tests %I0.1. The BTST
instruction has two operands—BTST src,src2. If src2 is
a register, then it sets the carry flag as following:

Carry flag = ((src2 >> (src & 31)) & 1)

Thus, BTST #1,r12 sets the carry flag only if bit 1 of
r12 is set. The next instruction BMC #0,r13 sets bit 0 of
r13 if the carry flag is set. Since the bits of r13 are mapped
to the PLC’s digital outputs, the instruction basically actuates
the output device connected to the output port 0 on the PLC’s
slot 0, when the carry flag is set, and vice versa. Lastly, RTS
is a return instruction.

Morph 1—It was generated through equivalent-instructions
substitution. The TST instruction, replacing BTST in the
original code, performs a logical AND operation on its two
operands and sets the zero flag if the result is zero, otherwise
clears. Then, we can substitute BMC with BMNE which sets a
bit if the zero flag is 0, otherwise clears the bit. To sum up, an
instruction sequence (BTST, BMC) can be substituted with an
equivalent sequence (TST, BMNE) in the RX machine code.

Morph 2—It represents a bit more complicated obfuscation.
First, MOV.L #0, r1 clears r1 because we will use r1
later. Then, the next BTST instruction checks bit 1 of the
input register (r12) and modifies the carry flag accordingly
as in the original program. However, the logic executed by a
single BMC instruction in the original program was stretched
over three instructions—BMC, CMP, and BMGE.

Both morphs ran successfully on the Modicon M221 PLC,
but SoMachine Basic failed to decompile them.

Attack on S7-300 PLC. Our second subject were Siemens
S7-300 (firmware v3.2.17) and TIA Portal (v16). We used
Radare2 with a library2 to disassemble MC7 bytecode (which
is the target language for S7-300) into the STL language
(which is an assembly-like language corresponding to MC7
bytecode). The Snap7 library and its python wrapper3 were
used to download the obfuscated code into the PLC.

2https://github.com/wargio/libmc7
3https://github.com/gijzelaerr/python-snap7

XIC

%M0.0

Rung 0

OTE

%Q0.0

Fig. 3. An example control-logic source (S7-300)

TABLE II
ORIGINAL AND OBFUSCATED PROGRAMS (S7-300)

Original Morph-1
Offset MC7 STL Offset MC7 STL

0x24
0x26
0x28

8000
d880
6500

A M 0.0
= Q 0.0
BE

0x24
0x28
0x2a
0x2c

700b00
02
8000
d880
6500

JU 0x28
A M 0.0
= Q 0.0
BE

Fig. 4. An decompilation error message from TIA Portal

Figure 3 shows an example control-logic source. Table II
describes the original target program (produced by TIA Portal)
for the example source program, and a morph generated
through garbage-code insertion. In this example, the garbage
code is the jump-unconditional (JU) instruction that we used
for merely jumping to the next instruction; namely, it plays
like a no-operation (NOP) instruction. The obfuscated code ran
well on S7-300 while TIA Portal generated an error message
(refer to Figure 4) when attempting to retrieve the control logic
from the PLC.

B. Evading ML-based Control-logic Detection

We also evaluated the DoDe attack against Shade [10],
which detects network packets containing control-logic code
using a ML-based approach. Since Shade does not support
Siemens S7-300, we conducted an experiment only for Mod-
icon M221.

Dataset. We generate a dataset that contains 14 original and
obfuscated control logic. To generate the dataset, we first
program 14 different control logic using SoMachine Basic,
then captures the downloading traffic of control logic to the
PLC, from which the binary control logic is extracted. After
disassembling the binary logic, we apply two obfuscation
strategies on the assembly code level; 1) inserting NOP in-
structions between each assembly instruction; 2) substituting
(TST, BMNE) for (BTST, BMC).

Detection result. We configured Shade using a support-
vector machine (SVM) with the radial basis function (RBF)
kernel. Table III shows the detection accuracy of control logic
code in Shade at 1% false postive rate. Among the 42
different features studied in [10], we select the #dec feature

TABLE III
DETECTION RATE AT 1% FALSE POSITIVE RATETable 3: Obfuscated control logic code-1

Assembly RX Machine Code
MOV #0, R13 66 0D
TST #2, R12 FD 74 CC 02

BMNE #0, R13 FD E0 1D
TST #4, R12 FD 74 CC 04

BMNE #1, R13 FD E1 1D
RTS 02

set. Since the bits of r13 register are mapped to the (digital)
outputs, the instruction actuates the output device connected
to the output port 0 of the PLC, if the carry flag is set. One way
to obfuscate the input/output logic is substituting a machine
instruction with a functionally equivalent one. For instance,
in the obfuscated code shown in Table 3, the TST instruction
substitutes for the BTST instruction of the original code. The
TST instruction performs a logical AND operation on its two
operands and set the carry flag if the result is 1. Therefore, TST
#2, R12 sets the carry flag only if bit 1 of the r12 register is
set. Similarly, to test bit 2 of the register, we can use TST #4,
R12 instead of BTST #2, R12. Other possible obfuscations
are described in Table 5 and 6 (in Appendix).
Dataset and deep packet inspection. We evaluate the
control-logic code obfuscation against Shade [23], which is
a shadow-memory system to identify control logic code in
PLC memory. Shade is designed to be resistant to the evasion
techniques [22, 23]. We generate a dataset that contains 14
original and obfuscated control logic.

To generate the dataset, we first program 14 different con-
trol logic using SoMachine Basic, then captures the down-
loading traffic of control logic to the PLC, from which the
binary control logic is extracted. After disassembling the
binary logic, we apply two obfuscation methods on the assem-
bly code level. The first method is to insert NOP instructions
between each assembly instruction. The second obfuscation
method is substituting instruction with functionally equivalent
ones (e.g., substituting TST for BTST and substituting BMNE or
BMGT for BMC).
Classification result. We employ the evasion techniques pre-
sented in [22] for both original and obfuscated control logic
when it is downloaded into a PLC. Table 4 shows the detection
accuracy of control logic code in Shade at 1% false postive
rate. We select the #dec feature (the byte size of decompiled
logic code5) and the L4gram feature (the longest continuous
match of 4-grams that are present in a pre-generate bloom
filter6) for a SVM classifier used in Shade, which showed the
best detection rate in [23]. When Shade uses only the #dec
feature, it did not detect a single packet which contains logic
code among 1700 code packets when the code is obfuscated,
while the detection rate is 83.16% without obfuscation. When

5Shade uses Eupheus to decompile the logic code of the M221 PLC.
6The bloom filter is generated from 22 binary control logic compiled by

SoMachine Basic [23].

Table 4: Logic code detection rate at 1% false positive rate
Original Obfuscated

of control logic 14 14
of write request packets (all) 1284 2420
of write request packets (code) 578 1700
control logic detection
- feature set: {#dec}

14/14
(100%)

0/14
(0%)

control logic detection
- feature set: {L4gram}

14/14
(100%)

3/14
(21.43%)

control logic detection
- feature set: {#dec, L4gram}

14/14
(100%)

3/14
(21.43%)

code packet detection
- feature set: {#dec}

469/578
(83.16%)

0/1700
(0%)

code packet detection
- feature set: {L4gram}

486/578
(86.17%)

61/1700
(3.59%)

code packet detection
- feature set: {#dec, L4gram}

522/578
(92.6%)

63/1700
(3.71%)

the L4gram feature is used, Shade detects obfuscated code
slightly better, but almost meaningless (3.59%). If we assume
Shade detects control logic if it detects one of its code pack-
ets, the detection rate is 100% on the original code while it
drops to 21.43% at best on the obfuscated code.

5 Mitigation

This section discuss some mitigation strategies to the remote
code execution on PLCs.
Operate with RUN mode. PLCs often support three different
operation modes which is configured using a physical method
(e.g., hardware key). In RUN mode, one can not overwrite the
control logic section in the memory. In PROGRAM mode, a
PLC can be programmed by engineering software. And in
REMOTE mode, engineer can remotely change the mode of the
PLC. One of the best practice to keep the PLC protected is
to operate the PLC in RUN mode during normal operation.
However, PLCs often run in REMOTE mode for convenience
in practice. In addition, since it does not prevent an attacker
inject code into the data section in the memory, it is vulnerable
to data execution attack [22].
Secure authentication protocol. Most PLCs use password-
based authentication protocol to authenticate users who wants
to communicate with them. However, the PLC vendors typ-
ically define their own authentication protocols and do not
disclose how they work, which often makes the authentication
protocol weak [3–5].
Control logic code signing. Code signing is a mechanism
of authenticating the authors of executables or scripts based
on cryptographic measures. It is widely used in IT systems
to authenticate the code publisher and provide the integrity
of the code. Cryptographic hardware modules such as HSM

10

(the byte size of decompiled logic code5) and the L4gram
feature (the longest continuous match of 4-grams that are
present in a pre-generate bloom filter6) for a SVM classifier
used in Shade, which showed the best detection rate in [10].
When Shade uses only the #dec feature, it did not detect
a single packet which contains logic code among 1700 code
packets when the code is obfuscated, while the detection rate is
83.16% without obfuscation. When the L4gram feature is used,
Shade detects obfuscated code slightly better, but almost
meaningless (3.59%). If we consider Shade to detect control
logic when it detects at least one of the packets containing
the logic code, the detection rate is 100% on the original code
while it drops to 21.43% at best on the obfuscated code.

The experiment result was somewhat expected because the
training dataset of Shade was collected from the normal
control logic, which was not obfuscated. This result indicates
that the DoDe attack may also evade the machine-learning
models trained using the compilation output produced by
engineering software.

V. DISCUSSION

Implication. Code obfuscation is widely used in the de-
velopment of both benign or malicious software in the IT
domain. An attacker often obfuscates her malicious code to
impede the defender’s reverse engineering process. Deobfus-
cation techniques have been proposed [15], [16] to simplify
the obfuscated code while preserving its semantics. However,
without knowing the attacker’s choice of obfuscation, it is
very unlikely, if not impossible, to recover the original code.
In digital forensics for PLCs, where the investigator heavily
relies on the engineering software, only the original code, not
just simplified code, is required to make it decompiled and
show the semantics in the context of the underlying physical
process.

5Shade uses Eupheus to decompile the logic code of the M221 PLC.
6The bloom filter is generated from 22 binary control logic compiled by

SoMachine Basic.

In reality, an attacker may employ a man-in-the-middle
(MITM) attack along with a control-logic attack, like Stuxnet,
to prevent the defender from acquiring the malicious control
logic at all, making them get a copy of a benign program.
However, once the defenders get rid of the MITM, she can
obtain the malicious control logic and feed it to the engineering
software to see its source code. The DoDe attack can be
used together with a Stuxnet-style attack, to further hinder
the forensic investigation and incident response. Although
we showed only a few obfuscations in Section IV just for
demonstration purpose, there are many possible obfuscations
that the attacker can choose, and therefore it is difficult for the
defender to learn the implementation details for the attacker’s
obfuscation and deobfuscate it to the original form that can
be decompiled by the engineering software.

Mitigation. PLCs generally support three different operation
modes, which can be configured by a physical method (e.g.,
hardware key). In the run mode, one can not overwrite the
control logic in a PLC’s memory. In the program mode, a
PLC can be programmed by engineering software. And in the
remote mode, engineers can remotely change the mode of the
PLC. One of the best practices to keep the PLC protected is
to operate the PLC in the run mode during regular operation.
However, in practice, PLCs often run in the remote mode
for convenience. Note that a PLC without further memory
protection can still be vulnerable to data execution attacks [4]
since the run mode does not prevent an attacker from injecting
code into the data section in the PLC’s memory.

Code signing is a mechanism of authenticating the authors
of executables based on cryptographic measures. It is widely
used in IT systems to authenticate the code publisher and
provide the integrity of the code. Cryptographic hardware
modules such as HSM can be used to safely keep the private
key. However, to the best of our knowledge, code signing is
not used in PLCs yet. Although a code signing system can
be breached if not correctly designed [17], it can improve the
security of PLCs against control-logic attacks in general.

VI. CONCLUSION

In this paper, we discuss the limitation of using engineering
software as a digital forensic tool to investigate control-logic
attacks. We present the denial-of-decompilation (DoDe) attack,
which exploits engineering software’s fundamental design
principle in compiling and decompiling the control logic of
a PLC, which makes the attack generally applicable. We have
evaluated the attack on two major vendors’ PLCs. Experiments
using instruction-level obfuscation have shown that the attack
is effective. In addition, we also shows that the DoDe attack
may also be effective to evade ML-based control-logic detec-
tion. Based on the findings in this study, we argue that current
ICS forensic capabilities relying on engineering software are
incomplete, and the ICS community needs to develop more
robust strategies and tools to respond sophisticated control-
logic attacks which involve different techniques including
control-logic obfuscation.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Homeland Security under Grant Award Number
17STCIN00001-05-00. In addition, this work has received
funding from the Louisiana Board of Regents’ Research
Competitiveness Subprogram (RCS) under contract number
LEQSF(2021-22)-RD-A-27.

Disclaimer. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied, of the U.S. Department of Homeland Security.

REFERENCES

[1] N. Falliere, L. O. Murchu, and E. Chien, “W32.stuxnet dossier version
1.4,” Symantec, Tech. Rep. 6, 2011.

[2] A. Di Pinto, Y. Dragoni, and A. Carcano, “TRITON: The first ICS cyber
attack on safety instrument systems,” in Proceedings of 2018 Black Hat
USA, 2018.

[3] S. Kalle, N. Ameen, H. Yoo, and I. Ahmed, “CLIK on PLCs! Attacking
Control Logic with Decompilation and Virtual PLC,” in Proceedings of
2019 NDSS Workshop on Binary Analysis Research (BAR), 2019.

[4] H. Yoo and I. Ahmed, “Control logic injection attacks on industrial con-
trol systems,” in Proceedings of the 34th IFIP International Conference
on ICT Systems Security and Privacy Protection (IFIP SEC). Springer,
2019, pp. 33–48.

[5] S. E. McLaughlin, “On dynamic malware payloads aimed at pro-
grammable logic controllers,” in Proceedings of the 6th Usenix Workshp
on Hot Topics in Security (HotSec), 2011.

[6] S. McLaughlin and P. McDaniel, “SABOT: Specification-based payload
generation for programmable logic controllers,” in Proceedings of 2012
ACM Conference on Computer and Communications Security (CCS),
2012, pp. 439–449.

[7] R. Sun, A. Mera, L. Lu, and D. Choffnes, “Sok: Attacks on industrial
control logic and formal verification-based defenses,” in Proceedings of
2021 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2021.

[8] “JEB Decomipler for Siemens S7 PLC,” https://www.pnfsoftware.com/
jeb/plc, [Online; accessed 19-April-2022].

[9] A. Keliris and M. Maniatakos, “ICSREF: A framework for automated re-
verse engineering of industrial control systems binaries,” in Proceedings
of 2019 Network and Distributed Systems Security (NDSS) Symposium,
2019.

[10] H. Yoo, S. Kalle, J. Smith, and I. Ahmed, “Overshadow PLC to
detect remote control-logic injection attacks,” in Proceedings of the 16th
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA). Springer, 2019, pp. 109–132.

[11] S. A. Qasim, J. M. Smith, and I. Ahmed, “Control logic forensics frame-
work using built-in decompiler of engineering software in industrial
control systems,” Forensic Science International: Digital Investigation,
vol. 33, p. 301013, 2020.

[12] S. Senthivel, S. Dhungana, H. Yoo, I. Ahmed, and V. Roussev, “Denial
of engineering operations attacks in industrial control systems,” in
Proceedings of the 8th ACM Conference on Data and Application
Security and Privacy (CODASPY), 2018, pp. 319–329.

[13] S. C. Reghizzi, L. Breveglieri, and A. Morzenti, Formal languages and
compilation. Springer, 2013.

[14] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in 2014 IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 276–291.

[15] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 674–691.

[16] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of virtualization-
obfuscated software: a semantics-based approach,” in Proceedings of
the 18th ACM conference on Computer and communications security,
2011, pp. 275–284.

[17] D. Kim, B. J. Kwon, and T. Dumitraş, “Certified malware: Measuring
breaches of trust in the windows code-signing pki,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1435–1448.

