
DFRWS 2022 USA - Proceedings of the Twenty-Second Annual DFRWS USA

Forensic investigation of instant messaging services on linux OS:
Discord and Slack as case studies

Megan Davis*, Bridget McInnes, Irfan Ahmed
Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA

a r t i c l e i n f o

Article history:

Keywords:
Discord
Slack
Memory forensics
Volatile memory
Discord forensics
Slack forensics

a b s t r a c t

Instant messaging applications have gained considerable market share over the past decade and have
become one of the most used applications for users worldwide. However, due to the low-barrier to entry
and ease of use, these applications (apps) have also garnered the attention of criminals wanting to use
the apps to facilitate criminal activities. The memory forensic examination of Discord and Slack on Linux
operating system (specifically, Ubuntu 20.04.3 LTS), two popular instant messaging apps, has gone
largely unexplored. In this paper, we examined both apps and found data remnants of users’ activities
that are of forensic interest. We detected a variety of information including: Slack specific data, Discord
specific data, username, emails, passwords, messages, conversations, and uploaded attachments, all of
which could be utilized in a forensic investigation.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Instant messaging applications (IMAs) have been around since
1969 when a student sent random messages over the internet on a
program dubbed Party Line (A history of instant messaging, 2020).
The initial IMA applications were fairly limited in their capabilities,
however in the past few years IMAs have expanded their capabil-
ities to include: direct messaging , groupmessaging, dedicated chat
rooms/channels, the ability to upload files, integrating bots,
embedded gifs, and voice-over IP. While this has been seen as a
boon for team collaborations, it has also become an area for crim-
inal activity to take place. According to Insight, a cyber threat in-
telligence company, they detected nearly 223,000 mentions of
Telegram and 392,000 mentions of Discord on criminal-based
community group boards (Vijayan, 2020). As such IMAs have
become an area that can provide crucial investigatory data for
forensic investigators.

In 2019 the COVID pandemic changed the way workers inter-
acted on a day-to-day basis. Nearly 71% of employees shifted from
an in-office working environment to working from home (Parker
et al., 2021). Companies and individuals started adopting new
ways of communication, including IMAs. Two popular instant

messaging applications, Discord and Slack, had seen growth prior
to COVID but the COVID work transition helped push wider
adoption.

Discord is an application developed by Jason Citron (Curry,
2021a) and it has been traditionally defined as an application for
facilitating communication around gaming. This is due to its gen-
eral association with the streaming platform Twitch which mostly
caters to video gaming audiences. But it has tried to broaden its
consumer base by working with experts in communities such as
gardening and sports (R.E.S.P.A. et al., 2021) (sal19, 2021). The
increased adoption of the tool has also attracted hate groups and
criminal enterprises. As reported by Kotaku, in 2021 Discord noted
that they had removed thousands of servers including those that
were related to “child harm material, cybercrime, doxxing,
exploitative content, and extremist or violent content” (Grayson,
2020). As of 2021, it boasted 140 million active users (Curry, 2021a).

Whereas, Slack has positioned itself as a more professional
application designed for more traditional businesses. Over the past
few years its focus has been to gain market share against its main
competitor, Microsoft Teams, Slack has also attracted hate groups.
In the last report issued by Slack directly in 2019, they stated that
they had banned 27 user accounts tied to hate groups (Slack). As of
2019, its last published user count, there were 12 million Slack
users (Curry, 2021b).

Discord and Slack are frequently used IMAs that allow the up-
load of images, videos, and files. Both applications are built using
the Electron framework. The Electron framework, released in 2013,

* Corresponding author.
E-mail addresses: davisma24@vcu.edu (M. Davis), btmcinnes@vcu.edu

(B. McInnes), iahmed3@vcu.edu (I. Ahmed).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi

https://doi.org/10.1016/j.fsidi.2022.301401
2666-2817/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Forensic Science International: Digital Investigation 42 (2022) 301401

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:davisma24@vcu.edu
mailto:btmcinnes@vcu.edu
mailto:iahmed3@vcu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301401&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301401
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2022.301401


is designed to abstract away the knowledge required to build native
desktop applications. Instead these apps can be built using web
technologies like HTML, CSS, and JS. It works by creating an
application window which renders pages that can be interacted
with through the native graphical user interface (GUI) of the OS.
The data stored in volatile memory of these applications could be
valuable artifacts for memory forensic investigators.

In this paper, we present a memory forensic examination of
both Discord and Slack on Linux OS, which has gone largely
unexplored in the literature (refer to Table 2 for summary). The
closest to our work is DiscFor (Motylinski et al., 2020) created by
Motylinski et al. for Discord data extraction on disk without
memory analysis. We only focus on memory forensics involving
examining the memory snapshots taken after IMA-specific ac-
tivities. Our results show that application information such as
usernames, emails, passwords, messages, conversations, and files
can be acquired from system and app process memory dumps,
which may be useful for forensic investigators. We obtained URLs
created when uploading files and found that Discord file URLs
can be accessed without restriction. Whereas Slack file URLs

require user authentication to ensure that only members of the
file's corresponding workspace can access it.

The remainder of the paper is structured as follows. Section 2
describes previous related works. In section 3, we describe our
method of experimental setup, memory acquisition, data sanitiza-
tion, and analysis. Third, we present and discuss our results for both
our Discord and Slack experiments in Sections 4, 5, 6. Finally, Sec-
tion 7 presents our conclusions and future work.

2. Related work

IMAs have been the subject of numerous investigations as seen
in Table 2. This table provides a snapshot of the operating systems,
focus, applications, and tools used in previous works. This subset of
papers is a rather small sampling of the papers published in the last
ten years regarding retrieving artifacts from IMAs. While there
were papers published prior to 2011, most of themwere focused on
older operating systems and applications that no longer hold a
majority of the market share. The October 2021 GlobalStats report
on Operating Systems showed that Android holds 39.75%,Windows
32.44%, iOS 16.7%, OS X 6.85%, Unknown 1.9%, and Chrome OS 1.1%
(Operating system market share worldwide, 2021). Table 1 shows
the operating systems investigated in the reviewed papers. Like
GlobalStats Android had the most papers, followed by Windows,
iOS, Linux and Mac. The reviewed papers did not present any
reasoning on why they chose a particular operating system over
another. However, Motylinski et al. (2020), Wu et al. (Thantilage
and Khac, 2019), Choi et al. (Choi et al., 1016), Sgaras et al. (2015),
Dezfouli et al. (2015) investigated multiple operating systems.

Most of the apps selected for study followed market trends. As
reported by Statista, the most popular global applications are: 1)

Table 1
Breakdown of operating systems investigated.

OS Count

Android 7
iOS 2
Linux 1
Mac 1
Windows 7 2
Windows 8 1
Windows 10 3

Table 2
Existing forensic analysis of instant messaging applications.

Paper Year System Analysis
Focus

Application Tools Used

Salamh et al.
(Salamh et al.,
2020)

2020 Android Hard disk WhatsApp HxD Hex Editor, Magnet ACQUIRE, OSForensics,
SQLLite Forensic Explorer, WinHex

Choi et al. (Choi
et al., 1016)

2019 Windows 7 &
10

Hard disk/
Volatile
memory

KakaoTalk, NateOn, QQ messenger CheatEngine, Process Monitor

Motylinski et al.
(Motylinski et al.,
2020)

2020 Android, Mac,
Linux,
Windows 10

Hard disk Discord DiscFor

Bashir et al. (Bashir
et al., 2019)

2019 Windows 10 Hard disk/
Volatile
memory

Linkedin Dumpit, FTK Imager, WinHex

Anglano et al.
(Anglano et al.,
2016)

2016 Android Hard disk/
Volatile
memory

ChatSecure Android Emulator, Android Device Bridge, LiME,
Volatility

Wu et al. (Wu et al.,
2017)

2017 Android Hard disk WeChat Android Debug Bridge

Sgaras et al. (Sgaras
et al., 2015)

2015 iOS, Android Hard disk WhatsApp, Skype, Viber, Tango Cellebrite UFED Physical Analyzer & UFED Touch
Ultimate, SQLite Studio

Thantilage et al.
(Thantilage and
Khac, 2019)

2019 Mac, Windows
10

Volatile
memory

Facebook, Twitter, FB Messenger, Viber, WhatsApp, Gmail,
Hotmail, Yahoo Mail, Skype, Google Search, Yahoo Search,
Google Maps

DumpIT, EmEditor, OSXpmem

Dezfouli et al.
(Dezfouli et al.,
2015)

2015 iOS, Android Hard disk/
Volatile
memory

Facebook, Twitter, Linkedin, Googleþ Access Data FTK, DCode, HxD Editor, iBackupBot,
Plist Editor for Windows, Sqlite Database Browser,
Wireshark

Kazim et al. (Kazim
et al., 2019)

2019 Windows 7 Volatile
Memory

Google Hangout Dumpit, Volatility, WinHex

Chu et al. (Chu et al.,
2013)

2013 Android Volatile
memory

Skype, MSN Access Data FTK

Yang et al. (Yang
et al., 1371)

2016 Windows Hard disk/
Volatile
memory

Facebook, Skype FTK Imager, Volatility, Wireshark

Nisioti et al. (Nisioti
et al., 2017)

2017 Android Volatile
memory

Facebook, Viber, Whatsapp Android Device Bridge, LiMe, Hexeditor

M. Davis, B. McInnes and I. Ahmed Forensic Science International: Digital Investigation 42 (2022) 301401

2



WhatsApp, 2) Facebook Messenger, and 3) WeChat (by Statista,
2021). The most notable difference of apps was in Choi et al.
(Choi et al., 1016), but it focused on popular IMAs in China and
South Korea. The only IMA no longer available is Googleþ, which
shut down on April 2, 2019 (Snider, 2019).

Kazim et al. (2019) used WinHex to evaluate a Window 7
memory dump, they search on keywords such as “chat”, “hang-
outs”, “email address”, and “@gmail”, all that are commonwords in
IM services. Theywere able to find the corresponding email address
and reconstruct an entire IM chat between two users.

Salamh et al. (2020) used Magnet ACQUIRE to create a mem-
dump from a rooted Android device. While they do not specify the
Android device or version, they were able to find theWeChats WAL
file, which is a file that WeChat writes to before it commits
remotely. They used the binwalking method and were able to find
the location of the SQLite database and a subset of images. Then,
they analyzed the memdump using the Linux String command and
found shared URLs, shared images, call logs, deleted messages,
random group messages with participants’ info.

Wu et al. (2017) installed WeChat on six different android de-
vices. Normally in order to get access to the WeChat directories in
Android root privilege is required, however Wu et al. were able to
extract the user data by using the Android Debug Bridge (ADB)
backup command. Using this method they were able to analyze the
data and found user info and WeChat moments.

Bashir et al. (2019) analyzed Linkedin's Windows 10 App. They
generated fake data for their users and then used DumpIt to acquire
the memory dump. Using WinHex, HexEditor, and manual explo-
ration, they were able to find the location of several artifacts
including credentials, images, private info, notifications, job
searches, connections, and install time.

Nisioti et al. (2017) utilized LiME wire to acquire memory from
an Samsung Galaxy III rooted Android device. They investigated
real life data generated over a year for Facebook, WhatsApp, and
Viber. In order to gather this data, they generated a set of python
scripts that would open the memory dump, search for data using
regular expressions, decode any matched data, and then store the
results. They extracted data such as messages, group participants,
and timestamps from each application.

Thantilage et al. (Thantilage and Khac, 2019) proposed a
comprehensive framework that would work as an end to end tool
to capture the RAM, extract the data, and then present the evidence
in a report. The framework utilizedmultiple RAM capture tools so it
could support multiple OS. Due to the amount of applications it
needed to support Thantilage et al. generated a set of regexes for
each app. Then they tested their framework on Windows 10 Pro,
Windows 10 Home, and macOS High Sierra. They were able to ac-
quire messages, user details and phone numbers from each appli-
cation. However, the downside to this framework is that for each
new app, a new set of regexes needs to be generated and added to
gather additional data.

Chu et al. (2013) mimicked messaging between an Android
phone on MSN, Skype and a PC. Then used the Android SDK to get
the RAM and Access Data FTK to analyze the dump. By using a
targeted search for the username of each application, they were
able to find instances stored within RAM. Even after the device had
been power cycled and a new dump was taken there were still
references to the username indicating that there was non-volatile
data stored.

Sgaras et al. (2015) investigated the available data found from
WhatsApp, Skype, Viber, and Tango on iOS 6.1.3 and Android 2.3.5.
They specifically noted that neither device was jail-broken or
rooted. For both OS's, they were able to use Filesystem Extraction
using Cellebrite UFED Physical Analyzer where they found contacts,
installation, traffic, content, and user profile data for Skype.

However, they found only a subset of these for Viber, Tango, and
WhatsApp. In addition, they found Logical Extraction data for Skype
and WhatsApp on Android but not on ioS.

Dezfouli et al. (2015) used a Samsung Galaxy Tab II running
Android 4.2 and iPhone 5s running iOS 7.1.2 to generate a fake set of
accounts and evaluated what data was retrievable from Facebook,
Twitter, Linkedin, and Googleþ. They dumped the memory using
dd Command for Android and Apple itunes for iOS. Then, they
looked for keywords, headers, and signatures. They found user-
names, names, profile pictures, contact information, location,
friends list, posts, messages, comments, and IP address. However,
for Google þ iOS they were unable to find comments, messages,
friend list, location, or education but did not expand uponwhy that
data was not found.

Yang et al. (Yang et al., 1371) set up Windows 8.1 machines that
would utilize the Facebook and Skype app. They mimicked a set of
tasks and took a snapshot after each one. From the memdumps
they were able to determine that both Facebook and Skype had
local application structures that utilized local databases. They also
found that Facebook caches were only available when logged into
the app whereas, Skype maintained theirs throughout the instal-
lation lifetime.

A search in Google Scholar for “Memory Forensics Slack” yielded
only results regarding slack space, the left over space on harddrives.
Whereas, a search for “Memory Forensics Discord” yielded one
result, Digital Forensic Acquisition and Analysis of Discord Appli-
cations, Motylinski et al. created DiscFor, a tool for Discord data
extraction on disk (Motylinski et al., 2020). However, DiscFor did
not analyze memory content and only focused on disk. The main
reason for this tool creationwas to alleviate the issues of identifying
and extracting data from the various files and filetypes associated
with Discord. By automating this process with DiscFor they were
able to quickly extract the data and generate a report. The process
flow of DiscFor works as the following: find the Discord directory
(identified by what OS) or pass in a custom path to Discord,
generate the output path, then create a backup, extract the relevant
data, carve the files from the cache and lastly produce a report.
DiscFor evaluates 3 different types of data the Disk Cache, Simple
Cache and the activity log. This process finds these files and extracts
the data based on the carving data types set. Motylinski et al. tested
DiscFor on a Windows 10 machine, where they were able to
reconstruct Discord entries that showed full messages, user email,
channel id, server id, timestamps, attachments, chat logs, user av-
atars, and javascript files.

3. Forensic examination method

We performed a series of steps to complete our volatile memory
forensic examination of both Discord and Slack. Disk based foren-
sics were not in scope for this. The first step of the experiment was
to set up the accounts that would be used for testing.We decided to
use Google's gmail service since it is one of the most popular and
easy to use email services. We created three Gmail accounts
belonging to James Kirk, Nyota Uhura, and LeonardMcCoy and then
created the corresponding Slack and Discord accounts, see Table 3
for all related information.

The second step was to set up Ubuntu 20.04.3 LTS OS. We
decided to use virtual machines (VMs) in order to reduce the
amount of set up time. In addition, by using VMs, we were able to
constrain the amount of RAM to 4 GB, which reduced the amount of
data to analyze in the post experiment. The Ubuntu 20.04.3 LTS
DiscImage was downloaded and three VMs, Machine1, Machine2,
and Machine3, were created using VMware Workstation. As part of
this process, we also prepared the files that would be used as part of
the testing. Machine1 and Machine2 had a set of files that they

M. Davis, B. McInnes and I. Ahmed Forensic Science International: Digital Investigation 42 (2022) 301401

3



would upload based on the scenario: through direct messaging
between two users they would upload a text document containing
the script for an original Star Trek episode and a.jpg image of a
starship pulled fromGoogle. For the server interactions we used the
same file types but different episode transcripts and images.

Next, we took a total of 54 snapshots for Machine1, Machine2,
and Machine3 as highlighted in Table 4. A base snapshot was
created before either application was installed, so it could then be
used for comparison if needed. It should be noted that there was a
subset of snapshots in which only one or two machines were
designated to take a snapshot. This was due to how the application
was designed. For example once a friend request is accepted in
Discord the other account cannot reissue a friend request without
removing them as a friend. So in this instance, Machine1's account
sent the friends request first, then Machine2's account accepted.
Thus, we created two separate snapshots.

Based on background research, we decided to use Volatility 2.7
to dump the process memory for Discord and Slack. In order to use
Volatility we generated a profile for the Linux Version. We then
used linux_pslist and collected the process ids for Discord and
Slack. The process ids remained the same for the duration of the
tests; Discord and Slack only generate new process ids when the
application is restarted. We then took the process ids and used

Volatility's linux_dump_map command. The linux_dump_map
command walks through each page of every memory range for a
specific process and dumps to disk, however to maintain alignment
it will write all zeros for pages not present. This caused an issue
where an excess amount of empty files were being created. This
specific functionality was due to the zread() call within the plugin
that returns an all zero buffer when a page is not present. We
modified linux_dump_map from using zread() to use read() instead
and then checked if the value was none, if so we skipped printing it
out. This significantly reduced the amount of data generated. We
ran the modified linux_dump_map command for each memory
dump.

Next we grepped on a set of keywords in the outputted files
generated from linux_dump_map: Discord, bones, mccoy, uhura,
nyota, gmail, james, kirk, discordapp, txt, username, password, and
Slack which returned a list of the files which contained these
strings. From this list we used the strings command with a limit of
n "4, which was set to the smallest length word in our keywords.
We were able to eliminate files that did not contain pertinent data.
Next, we collected the strings that could contain pertinent infor-
mation for these applications. Lastly, for the snapshots where the
process was not running i.e., Quit Discord Snapshot we used
WxHexeditor to inspect the snapshots and search on keywords.

Table 3
Account details.

Experiment Machine Username Email

Discord Machine1 JamesK654test#5651 jamesK654test@gmail.com
Machine2 BonesMccoy#4762 leonardmccoync007@gmail.com
Machine3 NyotaUhura#1273 nyotauhuranc007@gmail.com

Slack Machine1 James Kirk jamesK654test@gmail.com
Machine2 Leonard McCoy leonardmccoync007@gmail.com
Machine3 Nyota Uhura nyotauhuranc007@gmail.com

Table 4
Details of the snapshots taken.

Experiment Snapshot Account Description

Discord Base Snapshot All A control snapshot that was made prior to the installation of Slack or Discord.
Install Snapshot All Snapshots were taken after Discord was installed using snap.
Login Snapshot All Snapshots were taken after logging into Discord.
Profile Image and Status Update
Snapshot

All Snapshots were taken after updating status message and user profile image.

Friend Request Snapshot Machine1 A snapshot was taken after the Friend Request Process was initiated. In this, Machine1 sent a friend request to
Machine2 and Machine3.

Friend Request Accepted
Snapshot

Machine2/
3

Snapshots were taken after accepting the Friend Request.

Direct Messaging Snapshot Machine1/
2

Snapshots were taken after the direct message interaction between Machine1 and Machine2.

Created Server Snapshot Machine1 A snapshot was taken after the Machine1 account created a Discord Server.
Joined Sever Server Snapshot All Snapshots were taken after Machine2 and Machine3 joined Machine1's Discord server and sent messages in

general chat.
Assigned Roles Snapshot All Snapshots were taken after Machine1 assigned roles to Machine2 and Machine 3.
Added Role to Private Channel
Snapshot

All Snapshots were taken after Machine1 changed Machine's 3 role to see the hidden channel.

Voice Chat Snapshot All Snapshots were taken while Machine1 and Machine2 were in the General Voice chat channel.
Quit Discord Snapshot All Snapshots were taken after each user quit Discord.

Slack Install Snapshot All Snapshots were taken after Slack was installed using snap.
Login/ Create Workspace
Snapshot

Machine1 A snapshot was taken after logging into Slack and creating a workspace.

Login/ Joined Slack Workspace
Snapshot

Machine2/
3

Snapshots were taken after Machine2 and Machine3 joined Machine1's workspace.

Added Giphy Bot Snapshot Machine1 A snapshot was created after Machine1 added the Giphy bot to the workspace.
Updated Profile Snapshot All Snapshots were taken after updating status message and user profile image.
Direct Chat Message Snapshot All Snapshots were taken after Machine1 sent direct messages to Machine2 and Machine3.
Private Chat Snapshot Machine1/

2
Snapshots were taken after messages were sent in a private Chat.

Private Chat Added Snapshot All Snapshots were taken after Machine3 was added to the private Chat.
Quit Slack Snapshot All A snapshot was taken after each user quit Slack.

M. Davis, B. McInnes and I. Ahmed Forensic Science International: Digital Investigation 42 (2022) 301401

4

mailto:jamesK654test@gmail.com
mailto:leonardmccoync007@gmail.com
mailto:nyotauhuranc007@gmail.com
mailto:jamesK654test@gmail.com
mailto:leonardmccoync007@gmail.com
mailto:nyotauhuranc007@gmail.com


4. Discord results & discussion

This section discusses our findings of memory forensics on
Discord application.

4.1. Install snapshot

This snapshot was taken after using the snap command “sudo
snap install discord” to install Discord. The only information found
was the reference to snap installation.

4.2. Login snapshot

This snapshot was taken after the Discord login process had
been completed. At first, we attempted a search for @gmail, which
yielded over a hundred matches. Most of the matches belonged to
open source scripts that Discord utilized. Using the full @gmail
address for each machine we refined it to around 33e35 matches.

From this data we gathered the following information: user-
name, id, avatar id, channel ids, the phone number associated with
the account, guild positions, guild folders, show current game
status, region, and geolocation. Most importantly, we found a JSON
string containing the user's login and password, as seen in Fig. 1.
The login JSON was found in all subsequent Discord snapshots.

4.3. Profile image and status update

This snapshot was taken after the user's avatar image and status
were updated. We found the URL that Discord created for the
uploaded avatar image; this is discussed in more detail in 4.6.

The custom status messages were more difficult to locate,
initially we looked for a JSON structure that contained status but
were unable to find any. However, after searching for the exact
status update phrase we found the full string, for example for
Machine1 we found

“Captain of a starship!".

4.4. Friend request snapshot

We made Machine1 send friend requests to Machine2 and
Machine3 using their Discord ids. From this snapshot, we found
data referring to each user and a success message from Machine1:

Your friend request to BonesMccoy#4762 was sent.

4.5. Friend request accepted snapshot

Accepting the Friend Request didn't yield any new information.

4.6. Direct messaging snapshot

Asmentioned in the set up, Machine1 andMachine2 had a set of
files that they would upload to each other. We decided to limit this
interaction to only Machine1 and Machine2 to reduce the amount
of set up and snapshots. Machine1 and Machine2 uploaded their
set of files to each other with a short message, gif, and reaction
(applied to a message). On each snapshot we found data relating to
the messages including discordapp links for the attachments. Dis-
cordapp links are the way Discord handles file retention, it follows
this basic format: https://(cdn/media).discordapp.com/(avatars/
attachments)/id/file_id/file_name. With this information we were

able to take the URLs found12 and paste them into a separate
browser and retrieve the uploaded files and images.

4.7. Created server snapshot

Machine1 created a new Discord server called “The Enterprise
Server”. In this snapshot we found JSON objects, see Fig. 2, refer-
encing the server name, as well as direct references to the Discord
Guild id.3

4.8. Joined sever snapshot

Machine1 sent server invitation links to Machine2 and Ma-
chine3; both machines accepted and joined the server. Then, Ma-
chine1 and Machine2 sent messages in the Discord server #general
chat channel that included images, gifs, text files, reactions, and
text-only messages. Machine3 only responded to Machine1 and
Machine2 messages with gifs and text. In all three snapshots we
found JSON that contained the image URLS, text files URLs, message
text, and gif URLs. Fig. 3 shows a small snippet of the information
available including gif link, channel id, author name, author id,
timestamp, and edited timestamp.

4.9. Assigned roles snapshot

On the Discord server, Machine1 created two roles, communi-
cations andmedical, and assigned them toMachine2 andMachine3
respectively. Then Machine1 created a private chat channel called
#officers-only that at first could only be seen by the server owner
(Machine1) and users with the medical role (Machine2). In this
channel Machine1 and Machine2 exchanged text messages.

Within the Machine1 and Machine2 snapshots we found JSON
structures that referenced the conversations shown in Fig. 4.
However, in the Machine3 snapshot, we found a string reference to
the channel #officers-only but no additional information.

4.10. Added role to private channel snapshot

Machine1 updated the private channel to allow those with the
communication role to see it. After this change we found references

Fig. 1. Machine1 username password, password redacted.

Fig. 2. Discord server JSON

1 https://cdn.discordapp.com/attachments/932809094883082250/
932813445072584764/s1-04.

2 https://cdn.discordapp.com/attachments/932809094883082250/
932813785197072495/starship-1-1-message.jpg.

3 https://discordapp.com/channels/932820912808534027/
932820912808534030.

M. Davis, B. McInnes and I. Ahmed Forensic Science International: Digital Investigation 42 (2022) 301401

5

https://(cdn/media).discordapp.com/(avatars/attachments)/id/file_id/file_name
https://(cdn/media).discordapp.com/(avatars/attachments)/id/file_id/file_name
https://cdn.discordapp.com/attachments/932809094883082250/932813445072584764/s1-04
https://cdn.discordapp.com/attachments/932809094883082250/932813445072584764/s1-04
https://cdn.discordapp.com/attachments/932809094883082250/932813785197072495/starship-1-1-message.jpg
https://cdn.discordapp.com/attachments/932809094883082250/932813785197072495/starship-1-1-message.jpg
https://discordapp.com/channels/932820912808534027/932820912808534030
https://discordapp.com/channels/932820912808534027/932820912808534030


to the text messages sent in #officers-only in Machine3's snapshot.
This data can be seen in Fig. 5 and Fig. 6.

4.11. Voice chat snapshot

For the voice chat snapshot, Machine1 and Machine2 joined the
general voice channel while Machine3 did not. The only reference
we found about voice chat in the snapshots was one line that
specifically references the General voice channel stating :“General
(voice channel), 2 users”. There were no references to which users
were connected nor how long they had been connected.

4.12. Quit Discord Snapshot

No new data was found, but the Discord data did remain in
memory.

5. Slack results & discussion

This section discusses our findings of memory forensics on Slack
application.

5.1. Install snapshot

This snapshot was taken after using the snap command “sudo
snap install slack eclassic” to install Slack. We found the same snap
install references as we had found in the Discord Install Snapshot.

5.2. Login/ create workspace snapshot

There are twomain differences between the initial login process
of Discord and Slack. First, the login process for Slack is routed
through an external login server. We utilized the Gmail login ser-
vice since we had already created gmail accounts for each user.
Second, Slack limits the ability for users to interact on a one-to-one
basis. In order to have one-to-one conversations both users must be
a part of the same workspace because users are only defined in the
context of a workspace. We had Machine1 login first, create a
workspace, and send Slack invitations to Machine2 and Machine3.
The snapshot data revealed emails, team id, name, real name,
timezone, display info, statuses, workspace invite and workspace
name, as seen in Fig. 7. However, we were unable to find any
reference to the gmail password or an outh2 token.

5.3. Login/ joined slack workspace snapshot

The snapshot data did not reveal any new information.

5.4. Added giphy bot snapshot

Unlike Discord, where gifs are an inherent part of the chat op-
tions, Slack requires the addition of a bot that interacts with gifs.
We decided to have Machine1 add the Giphy bot to the workspace.
We found that once added we were able to see JSON references to
gifs as seen in Fig. 8.

5.5. Updated profile snapshot

For each user we had them update their profile image and status
message. From the snapshot were we able to find references to the
uploaded avatar files,4 and accessed them. In addition to the image,
we found references to the custom status in JSON format, as seen in
Fig. 9.

5.6. Direct chat message snapshot

Now that all users existed within the sameworkspace they could
send direct messages to one another. We had Machine1 send direct
messages toMachine2 andMachine 3. The snapshot analysis from all
machines revealed a wealth of information including file uploads,
message data, and channel data. However, unlike Discord, where we
were able to use the URL to retrieve the files, when we attempted to
access the URL from Slack5 6 it redirected us78 to sign in to the En-
terprise Corp workspace. Slack, unlike Discord, has an extra layer of
security where it ties the file to the team id and thus when trying to
access an URL in that workspace requires verification that the user is
part of the workspace. This change makes sense for Slack since it has
been marketed at a more professional environment, where files and
data are generally considered more sensitive.

5.7. General chat messages snapshot

We had each machine send messages including text, gifs and
reactions in the general chat channel. We were able to find time-
stamp, text, author, author icon, author id, and author link.

Fig. 3. Machine3 discord gif response.

Fig. 4. Discord private channel text.

Fig. 5. Machine1 message denoting adding communications role to private channel.

Fig. 6. Machine3 posting a message in the private channel.

4 https://avatars.slack-edge.com/2022-01-18/2971087465987_
79e735b0ed7d27e40afe_192.jpg.

5 https://files.slack.com/files-tmb/T02UJ1FRX7U-F02UMAGGG4C-e09e01d758/
starship-1-1-message_80.jpg.

6 https://files.slack.com/files-pri/T02UJ1FRX7U-F02UCAXFG1L/s1-04.
7 https://the-enterprise-corp.slack.com/?redir¼%2Ffiles-tmb%2FT02UJ1FRX7U-

F02UMAGGG4C-e09e01d758%2Fstarship-1-1-message_80.jpg.
8 https://the-enterprise-corp.slack.com/?redir¼%2Ffiles-pri%2FT02UJ1FRX7U-

F02UCAXFG1L%2Fs1-04.

M. Davis, B. McInnes and I. Ahmed Forensic Science International: Digital Investigation 42 (2022) 301401

6

https://avatars.slack-edge.com/2022-01-18/2971087465987_79e735b0ed7d27e40afe_192.jpg
https://avatars.slack-edge.com/2022-01-18/2971087465987_79e735b0ed7d27e40afe_192.jpg
https://files.slack.com/files-tmb/T02UJ1FRX7U-F02UMAGGG4C-e09e01d758/starship-1-1-message_80.jpg
https://files.slack.com/files-tmb/T02UJ1FRX7U-F02UMAGGG4C-e09e01d758/starship-1-1-message_80.jpg
https://files.slack.com/files-pri/T02UJ1FRX7U-F02UCAXFG1L/s1-04
https://the-enterprise-corp.slack.com/?redir=%2Ffiles-tmb%2FT02UJ1FRX7U-F02UMAGGG4C-e09e01d758%2Fstarship-1-1-message_80.jpg
https://the-enterprise-corp.slack.com/?redir=%2Ffiles-tmb%2FT02UJ1FRX7U-F02UMAGGG4C-e09e01d758%2Fstarship-1-1-message_80.jpg
https://the-enterprise-corp.slack.com/?redir=%2Ffiles-tmb%2FT02UJ1FRX7U-F02UMAGGG4C-e09e01d758%2Fstarship-1-1-message_80.jpg
https://the-enterprise-corp.slack.com/?redir=%2Ffiles-pri%2FT02UJ1FRX7U-F02UCAXFG1L%2Fs1-04
https://the-enterprise-corp.slack.com/?redir=%2Ffiles-pri%2FT02UJ1FRX7U-F02UCAXFG1L%2Fs1-04
https://the-enterprise-corp.slack.com/?redir=%2Ffiles-pri%2FT02UJ1FRX7U-F02UCAXFG1L%2Fs1-04


5.8. Private chat snapshot

Similar to our Discord Private chat, we had Machine1 create a
private channel #officers-table and only invited Machine2. Unlike
Discord there is not a roles feature and Machine1 only had to
reference Machine2's username to add them. Within this chat
Machine1 and Machine2 corresponded. We found JSON data
referencing those messages on Machine1 and Machine2 snapshots.
As expected we could not find any reference to the channel or the
messages from Machine3's snapshot.

5.9. Private chat added snapshot

We made Machine1 add Machine3 to the private channel #of-
ficers-table. We were then able to find direct references to the
messages exchanged.

5.10. Quit slack snapshot

No new data was found, but Slack data remained in memory.

6. Overall discussion

In Table 5, we present a summary of a subset of artifacts ob-
tained and from which application. This is not a fully comprehen-
sive list because each of the artifacts are part of a JSON object which
contains multiple attributes. Each of the attributes is dependant on
the type of object being fetched. For example the message JSON
object from Discord has the following attributes: type, channel_id,
avatar, discriminator, public_flags, attachments, embeds, mentions,

mentions_roles, pinned, mention_everyone, tts, timestamp, edit_-
timestamp, flags, and components. In addition some Slack artifacts
are defined with x* since the we were able to find the artifact but
not access it.

Finding the Discord password is not entirely unexpected as we
are inspecting volatile memory. Within volatile memory we expect
to see passwords or other sensitive information. We were able to
find the login JSON in the subsequent Discord snaps shots. How-
ever, these snapshots were all performed without restarting
Discord. Discord does store the login information after the first
successful login attempt so the user does not have to login in every
time, however it possible that instead of finding the login infor-
mation on a restart we would find a login token. While Discord has
each user create a Discord specific account, Slack utilizes a third
party for account generation. In this instance we used gmail
authentication and were unable to find any reference to the gmail
password nor an oauth token.

As noted in Section 4.6, Discord does not restrict access to the
images and files uploaded to Discord, they generate URLs that can
be accessed without any authentication. Whereas Slack requires
the user to authenticate against theworkspace that owns the image
or file. We were unable to find any articles onwhy Discord does not
restrict access to files or images by Discord Guild.

Of the tested artifacts the two that remained inaccessible were
the restricted channels and voice chat. For the restricted channels
we were unable to retrieve any JSON objects regarding the
restricted channel by the user excluded from the channel. Neither
application will push data to users that should not have access, the
data only becomes available once the users are given permission to
see the restricted channels. As for the Discord voice chat, we were
able to find a single string that references the general voice channel
however there was not a JSON object associated with it or any other
information. One possibility is that at the time of the snapshot the
JSON object that is pushed client side to update the application's
user interface was not captured or overwritten.

7. Conclusion and future work

Instant messaging applications (IMAs) have become a staple of
day-to-day communication for individuals and businesses alike.
However, for the same reasons companies find IMAs useful so do
criminals. Two of the more popular IMA applications Discord and
Slack have had limited analysis regarding what artifacts can be
retrieved from volatile memory, data that could be useful to
forensic investigators.

This paper presented the findings from a forensic examination
of two popular IMAs Discord and Slack. The experiment conducted

Fig. 8. Slack giphy bot JSON

Fig. 9. Machine1 custom status JSON

Table 5
Artifacts found in discord and slack.

Artifact Discord Slack

Avatar Image x x*
Discord Server x N/A
Email x x
Emojis x x
Friend Request x N/A
Gifs x x
Image x x*
Message x x
Password x e

Restricted Channels e e

Status x x
Slack Workspace N/A x
Text File x x*
User Roles x N/A
Username x x
Voice Chat e N/A

Fig. 7. Server workspace creation JSON

M. Davis, B. McInnes and I. Ahmed Forensic Science International: Digital Investigation 42 (2022) 301401

7



examined snapshots taken after installation, login, direct messages,
server/workspace messages, file uploads and other IMA specific
activities related to Discord and Slack. The results showed that
Discord and Slack data could be obtained fromvolatile memory. We
were able to acquire login information, phone numbers, chat
messages, attachments, reactions, bot ids, and app related data.
Also, we identified the lack of security restrictions built into Dis-
cord's uploaded files and the restrictions placed upon Slack
uploaded files. This data could be useful for forensic investigators.

While we found data stored within volatile memory there is still
room for exploration of other situations that could yield additional
data. Future work should explore users editing messages, Discord
bots, retrieving different file types like videos, users leaving Discord
servers, users deleting their accounts, users deleting messages,
administrators deleting messages, pinnedmessages, detect if a user
was muted or banned, what data exists after a prolonged period of
the application running, what data exists after quitting the appli-
cation, what data exists after reopening the application, Discord
screen sharing/ streaming, and if any data remains after uninstal-
ling the application. Lastly, a framework could be created to parse
the files for pertinent JSON objects quickly, reconstruct them, and
then display the data in a manner that is easier to read.

References

2021, R.E.S.P.A., Peterson, R.E.S., Peterson, S., Peterson, M.G.S., Aug 2021. With 150
Million Users, Does Discord Have the Goods to Be a Platform? https://omr.com/
en/discord-marketing-branded-communities/.

A History of Instant Messaging and Chat, Sep 2020. https://www.maize.io/news/
lizshemaria-historyof-instant-messaging/.

Anglano, C., Canonico, M., Guazzone, M., 2016. Forensic analysis of the chatsecure
instant messaging application on android smartphones. Digit. Invest. 19, 44e59.
https://doi.org/10.1016/j.diin.2016.10.001.

Bashir, S., Abbas, H., Shafqat, N., Iqbal, W., Saleem, K., 2019. Forensic analysis of
linkedin's desktop application on windows 10 os, 16th International Conference
on Information Technology-New Generations (ITNG 2019). Adv. Intell. Syst.
Comput. 57e62. https://doi.org/10.1007/978-3-030-14070-0_9.

by Statista, P., Nov 2021. Research Department, N. 2, Most popular messaging apps.
https://www.statista.com/statistics/258749/most-popular-global-mobile-
messenger-apps/.

J. Choi, J. Yu, S. Hyun, H. Kim, Digital forensic analysis of encrypted database files in
instant messaging applications on windows operating systems: case study with
kakaotalk, nateon and qq messenger, Digit. Invest. 28. doi:10.1016/
j.diin.2019.01.011.

Chu, H.-C., Lo, C.-H., Chao, H.-C., 2013. The disclosure of an android smartphone's
digital footprint respecting the instant messaging utilizing skype and msn.
Electron. Commer. Res. 13 (3), 399e410. https://doi.org/10.1007/s10660-013-
9116-1.

Curry, D., Sep 2021. Discord Revenue and Usage Statistics, 2021. https://www.
businessofapps.com/data/discord-statistics/.

Curry, D., May 2021. Slack Revenue and Usage Statistics, 2021. https://www.
businessofapps.com/data/slack-statistics/.

Dezfouli, F.N., Dehghantanha, A., Eterovic-Soric, B., Choo, K.-K.R., 2015. Investigating
social networking applications on smartphones detecting facebook, twitter,
linkedin and google artefacts on android and ios platforms. Aust. J. Forensic Sci.
48 (4), 469e488. https://doi.org/10.1080/00450618.2015.1066854.

Grayson, N., 2020 (Apr 2021. Discord Deleted Thousands of Violent Extremist and
Criminal Servers in. https://kotaku.com/discord-deleted-thousands-of-violent-
extremist-and-crim-1846623284.

A. Kazim, F. Almaeeni, S. A. Ali, F. Iqbal, K. Al-Hussaeni, Memory forensics: recov-
ering chat messages and encryption master key, 2019 10th International Con-
ference on Information and Communication Systems (ICICS)doi:10.1109/
iacs.2019.8809179.

M. Motylinski, A. Macdermott, F. Iqbal, M. Hussain, S. Aleem, Digital forensic
acquisition and analysis of discord applications, 2020 International Conference
on Communications, Computing, Cybersecurity, and Informatics (CCCI)doi:
10.1109/ccci49893.2020.9256668.

A. Nisioti, A. Mylonas, V. Katos, P. D. Yoo, A. Chryssanthou, You can run but you
cannot hide from memory: extracting im evidence of android apps, 2017 IEEE
Symposium on Computers and Communications (ISCC)doi:10.1109/
iscc.2017.8024571.

Operating System Market Share Worldwide, Oct 2021. https://gs.statcounter.com/
os-market-share.

Parker, K., Horowitz, J.M., Minkin, R., May 2021. How Coronavirus Has Changed the
Way Americans Work. https://www.pewresearch.org/social-trends/2020/12/
09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-way-
americans-work/.

sal19, May 2021. Discord Is Rapidly Expanding beyond Gaming, Attracting Suitors
like Sony and Microsoft. https://www.cnbc.com/2021/05/08/what-is-discord-
chat-service-fosters-community-expands-beyond-gaming.html.

F. E. Salamh, U. Karabiyik, M. K. Rogers, Asynchronous forensic investigative
approach to recover deleted data from instant messaging applications, 2020
International Symposium on Networks, Comput. Commun.doi:10.1109/
isncc49221.2020.9297227.

Sgaras, C., Kechadi, M.-T., Le-Khac, N.-A., 2015. Forensics acquisition and analysis of
instant messaging and voip applications. Compu. Foren. Lect. Notes in Comp.
Sci. 188e199. https://doi.org/10.1007/978-3-319-20125-2_16.

Slack, Slack, Mar 2019. Removes Hate Groups. https://slack.com/blog/news/slack-
statement-hate-groups.

Snider, M., Feb 2019. Google Sets April 2 Closing Date for Google , Download Your
Photos and Content before Then. URL. https://www.usatoday.com/story/tech/
talkingtech/2019/02/01/google-close-google-social-network-april-2/
2741657002/.

R. D. Thantilage, N. A. L. Khac, Framework for the retrieval of social media and
instant messaging evidence from volatile memory, 2019 18th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications/
13th IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE)doi:10.1109/trustcom/bigdatase.2019.00070.

Vijayan, J., Jun 2020. Criminals turn to im platforms to avoid law enforcement
scrutiny. https://www.darkreading.com/risk/criminals-turn-to-im-platforms-
to-avoid-law-enforcement-scrutiny.

Wu, S., Zhang, Y., Wang, X., Xiong, X., Du, L., 2017. Forensic analysis of wechat on
android smartphones. Digit. Invest. 21, 3e10. https://doi.org/10.1016/
j.diin.2016.11.002.

T. Y. Yang, A. Dehghantanha, K.-K. R. Choo, Z. Muda, Windows instant messaging
app forensics: facebook and skype as case studies, PLoS One 11 (3). doi:10.1371/
journal.pone.0150300.

M. Davis, B. McInnes and I. Ahmed Forensic Science International: Digital Investigation 42 (2022) 301401

8

https://omr.com/en/discord-marketing-branded-communities/
https://omr.com/en/discord-marketing-branded-communities/
https://www.maize.io/news/lizshemaria-historyof-instant-messaging/
https://www.maize.io/news/lizshemaria-historyof-instant-messaging/
https://doi.org/10.1016/j.diin.2016.10.001
https://doi.org/10.1007/978-3-030-14070-0_9
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://doi.org/10.1007/s10660-013-9116-1
https://doi.org/10.1007/s10660-013-9116-1
https://www.businessofapps.com/data/discord-statistics/
https://www.businessofapps.com/data/discord-statistics/
https://www.businessofapps.com/data/slack-statistics/
https://www.businessofapps.com/data/slack-statistics/
https://doi.org/10.1080/00450618.2015.1066854
https://kotaku.com/discord-deleted-thousands-of-violent-extremist-and-crim-1846623284
https://kotaku.com/discord-deleted-thousands-of-violent-extremist-and-crim-1846623284
https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share
https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-way-americans-work/
https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-way-americans-work/
https://www.pewresearch.org/social-trends/2020/12/09/how-the-coronavirus-outbreak-has-and-hasnt-changed-the-way-americans-work/
https://www.cnbc.com/2021/05/08/what-is-discord-chat-service-fosters-community-expands-beyond-gaming.html
https://www.cnbc.com/2021/05/08/what-is-discord-chat-service-fosters-community-expands-beyond-gaming.html
https://doi.org/10.1007/978-3-319-20125-2_16
https://slack.com/blog/news/slack-statement-hate-groups
https://slack.com/blog/news/slack-statement-hate-groups
https://www.usatoday.com/story/tech/talkingtech/2019/02/01/google-close-google-social-network-april-2/2741657002/
https://www.usatoday.com/story/tech/talkingtech/2019/02/01/google-close-google-social-network-april-2/2741657002/
https://www.usatoday.com/story/tech/talkingtech/2019/02/01/google-close-google-social-network-april-2/2741657002/
https://www.darkreading.com/risk/criminals-turn-to-im-platforms-to-avoid-law-enforcement-scrutiny
https://www.darkreading.com/risk/criminals-turn-to-im-platforms-to-avoid-law-enforcement-scrutiny
https://doi.org/10.1016/j.diin.2016.11.002
https://doi.org/10.1016/j.diin.2016.11.002

	81971c1e-ca5a-4230-b8df-7edfa7c7658e.pdf
	Forensic investigation of instant messaging services on linux OS: Discord and Slack as case studies
	1. Introduction
	2. Related work
	3. Forensic examination method
	4. Discord results & discussion
	4.1. Install snapshot
	4.2. Login snapshot
	4.3. Profile image and status update
	4.4. Friend request snapshot
	4.5. Friend request accepted snapshot
	4.6. Direct messaging snapshot
	4.7. Created server snapshot
	4.8. Joined sever snapshot
	4.9. Assigned roles snapshot
	4.10. Added role to private channel snapshot
	4.11. Voice chat snapshot
	4.12. Quit Discord Snapshot

	5. Slack results & discussion
	5.1. Install snapshot
	5.2. Login/ create workspace snapshot
	5.3. Login/ joined slack workspace snapshot
	5.4. Added giphy bot snapshot
	5.5. Updated profile snapshot
	5.6. Direct chat message snapshot
	5.7. General chat messages snapshot
	5.8. Private chat snapshot
	5.9. Private chat added snapshot
	5.10. Quit slack snapshot

	6. Overall discussion
	7. Conclusion and future work
	References



