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ATTACKING THE IEC-61131 LOGIC ENGINE
IN PROGRAMMABLE LOGIC CONTROLLERS
IN INDUSTRIAL CONTROL SYSTEMS

Syed Ali Qasim, Adeen Ayub, Jordan Johnson and Irfan Ahmed

Abstract  Inindustrial control systems (ICS), programmable logic controllers (PLCs)
directly monitor and control a physical process such as nuclear power
plants, gas pipelines, and water treatment. They are equipped with
a control logic written in IEC-61131 languages (e.g., ladder diagram
and structured text) that defines how a PLC should control a physi-
cal process. A PLC’s control logic is a usual target of a cyberattack
to sabotage a physical process. The existing attacks in the literature
generally focus only on injecting malicious control logic into a PLC.
This paper presents a new dimension of control logic attacks that tar-
get the control logic engine (responsible for running a control logic)
of a PLC. It demonstrates that a cyberattack can disable the control
logic engine successfully by exploiting inherent PLC features such as
program mode and starting/stopping engine. We develop two novel
case studies on control logic engine attacks by employing the MITRE
ATT&CK knowledge base on the real-world PLCs used in industry set-
tings, i.e., 1) Schweitzer Engineering Laboratory (SEL)’s Real-Time Au-
tomation Controller (SEL-3505 RTAC) equipped with security features
such as encrypted traffic and device-level access control, and 2) tradi-
tional PLCs, i.e., Schneider Electric’s Modicon M221, Allen-Bradley’s
MicroLogix 1400 and 1100 that do not have security features. The case
studies present the internals of the logic engine attacks and facilitate the
ICS research community and industry to understand the attack vectors
on the control logic engine. We evaluate the effectiveness of the control
engine attacks on a power substation, a 4-floor elevator, and a conveyor
belt to demonstrate their real-world impact of halting a physical process
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1. Introduction

Industrial control systems (ICS) monitor and control industrial phys-
ical and infrastructure processes such as power grids, nuclear plants, wa-
ter treatment facilities, and gas pipelines [16, 4, 5]. An ICS environment
consists of a control center and a field site. The control center consists
of ICS services such as human-machine interface (HMI) and engineering
workstation, while the field sites consist of the actual physical processes
monitored and controlled via sensors, actuators, and programmable logic
controllers (PLCs). PLCs are embedded devices that directly automate
industrial processes [7]. They have a control logic program written in
IEC 61131 languages such as instruction list, ladder diagram, and struc-
tured text that defines how a physical process is controlled.

A PLC’s control logic is a usual target of a cyberattack to sabotage a
physical process [8]. However, in the literature, the existing control logic
attacks only focus on injecting malicious control logic in a target PLC
over the network to disrupt or cause damage to the underlying physical
process [28, 19, 20, 27, 15, 25, 9, 21, 6]. For instance, Stuxnet, a piece
of ICS malware, targets Siemens Step 7 engineering software and S7-300
PLCs in a nuclear plant facility to inject malicious control logic [11].

This paper introduces a new dimension of control logic attacks by tar-
geting the control engine (responsible for running a control logic) in a
PLC. It shows that a cyberattack can successfully disable an IEC-61131
control-logic engine to halt a physical process controlled by a target PLC
by exploiting the PLC design features such as program mode and start-
ing/stopping engine. We develop two novel case studies on control logic
engine attacks by utilizing the attacks in MITRE ATT&CK knowledge
base such as denial of control (T0813), loss of availability (T0826), ma-
nipulation of control (T0831), unauthorised command message (T0855),
and man in the middle (T0830) [2]. We employ the MITRE ATT&CK on
the logic engine in four real-world PLCs used in industrial settings. The
first case-study covers Schweitzer Engineering Laboratory (SEL) Real-
Time Automation Controller (SEL RTAC 3505), which is well-equipped
with security features such as device access control encrypted traffic. The
second case-study consists of three traditional PLCs with no security
features, i.e., Schneider Electric’s Modicon M221 and Allen-Bradley’s
Micrologix 1400 and 1100 PLCs. The case studies discuss the internals
of the control logic engine attacks, including proprietary PLC communi-
cation protocols, and facilitate the ICS research community and industry
to understand the attack vectors on the control logic engine.

We evaluate the effectiveness of the control engine attacks on a power
substation, a conveyor belt, and a 4-floor elevator to demonstrate their
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real-world impact. In the conveyor-belt, a PLC controls the sorting of
different types of objects using sensors and air solenoid. In the substa-
tion, a PLC opens a circuit breaker when the voltmeter reports a voltage
level higher than a given threshold. The control engine attacks halt the
conveyor belt and prevent substation to control high voltage. In the ele-
vator, a user can select a floor both from inside and outside the elevator
as an input to a PLC. In response, the PLC moves the elevator to the
desired floor.

Contributions. Our contributions are threefold:

m  We have introduced a new attack vector that targets an IEC-61131
control-logic engine in a PLC to halt a physical process.

m  We successfully utilize the MITRE ATT&CK knowledge base to
develop and demonstrate control engine attacks on four real-world

PLCs.

m  We evaluate the effectiveness of the control engine attacks on con-
nected physical processes i.e., a power substation, a 4-floor eleva-
tor, and a conveyor belt to demonstrate their real-world impact of
halting a physical process.

2. Background and Related Work
2.1 Primer of Industrial Control Systems

Figure 1 shows a typical example of an industrial control system en-
vironment. An industrial control system can be divided into two parts:
1) field site, and 2) control center.

Field Site. The physical process is controlled and monitored with
sensors, actuators, and programmable logic controllers (PLC) on the
field sites. Figure 1 shows a typical industrial process of generating
steam. The water is added into the boiler and heated to convert it
into vapor, then transferred via a pipeline. The PLC receives different
sensor data on the water-level, pressure, and temperature in the tank and
then processes the data using a control logic to control these parameters
through operating valves. The PLC also sends the process state to the
control center over the network.

Control Center. The control center consists of a human-machine
interface (HMI), historian, control server, and engineering workstation.
The human-machine interface (HMI) shows the current state of the phys-
ical process. At the same time, the historian keeps logs of programmable
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Figure 1: Industrial control system scenario for industrial boiler

controllers’ input and output data for forensics and analytic purposes.
The control server communicates with the field site over the network.
The engineering workstation runs engineering software provided by the
programmable controller’s vendor to maintain and program the con-
trollers remotely. The control engineer can write a control logic program
in the engineering software and then download (write) it to a PLC or
upload (read) the existing code running on a PLC. IEC 61131-3 Stan-
dard allows five languages, i.e., ladder diagram (LD), sequential function
charts (SFC), function block diagram (FBD), structured text (ST), and
instruction list (IL), to write a control logic program.

2.2 Related Work

Existing control logic attacks in the literature either target a control
logic code running on a PLC (also referred to as control logic injection
attacks [26, 14, 23]) or compromise PLC firmware to manipulate control
logic execution [12]. Our attacks are new in that they target control logic
engine instead of control logic code in a target PLC without modifying
the PLC firmware. Table 1 shows the comparison of different attacks on
PLCs.

Senthival et al. [25] present three types of denial of engineering oper-
ations (DEO) attacks. In the first DEO attack, the attacker intercepts
the network traffic between the engineering workstation and a target
PLC and replaces the original ladder diagram program with an infected
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Table 1: The comparison of different attacks on PLCs.

one and vice versa when a control-logic program is downloaded and up-
loaded, respectively. Similarly, for the second DEO attack, the man-in-
the-middle attacker replaces part of the original ladder diagram program
with noise when a control logic program is uploaded, thereby crashing
the engineering software. The third DEO attack also crashes the im-
plementing software, but this time the attacker remotely downloads an
infected control logic to a PLC instead of performing man-in-the-middle.

Kalle et al. [15] present CLIK, a control logic infection attack, com-
prising of four phases. First, it compromises PLC security measures and
steals the control logic from it. Then, it decompiles the stolen binary
of the control logic to inject the malicious logic, followed by transfer-
ring the infected binary back to the PLC. Finally, it hides the malicious
logic written into the PLC from the engineering software by employing
a virtual PLC that first captures the original logic’s network traffic and
then sends this network traffic to the engineering software when it tries
to read the control logic written inside the PLC.

Similar to CLIK, McLaughlin et al. presented SABOT [18] a tool that
first uploads the targeted PLCs control logic byte code and decompiles
it into logical model and find a mapping between the devices connected
to the PLC and variables within the control logic. The attacker can then
change this mapping arbitrarily and download the control logic back to
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the PLC to cause damage to the plant. SABOT assumes the attacker
has the knowledge of ICS operations.

Yoo et al. [27] present two control logic injection attacks, namely 1)
data execution and 2) fragmentation and noise padding. In the data
execution attack, the attacker exploits the fact that the PLCs do not
enforce data execution prevention (DEP) and transfers the attacker’s
control logic to the data blocks of the PLC. The attacker then changes
the PLC’s system control flow to execute the logic located in data blocks.
Fragmentation and noise padding attack subverts deep packet inspection
by sending write requests with the attacker’s control logic. Each write-
request contains one byte of the control logic while the rest of the packet
includes noise. For every next write-request, the attacker attempts to
overwrite the PLC memory region previously written with noise due to
the previous request.

Govil et al. [13] presented malware written in ladder logic called ladder
logic bomb that an attacker can insert these malwares into the existing
control logic of a PLC. These logic bombs are hard to detect by a con-
trol engineer manually validating the control logic running on the PLC.
These bombs can either be activated via trigger signals to cause the
disruption or can persistently damage the physical operations over time.

Garcia et al. [12] presented Harvey, a model aware rootkit that sits
in a PLC firmware using JTAG (Joint Test Action Group) [22]. From
the legitimate input data Harvey generates fake, real-looking input. The
PLC processes this input according to the control logic and generates
output commands to actuators. Harvey blocks this output at firmware
level and sends the malicious output generated by attackers code to the
sensors. This abstraction helps Harvey in deceiving the control engineer
monitoring the HMI.

Schuett et al. [?] evaluated the possibility of modifying the PLC
firmware to execute remotely-triggered attacks. They first reverse en-
gineered the PLC framework and added modification. This modified
firmware is repackaged and installed on the PLC. Using this compro-
mised firmware, the attacker is able to perform time-based or remote
triggered denial of service attacks on the PLC.

3. Attacking Control Logic Engine
3.1 Adversary Model

We assume the adversary is in the ICS network and can communicate
with the target controller to launch a control logic engine attack. The
attacker can use a real-world IT attack (such as an infected USB stick
or a vulnerable webserver) to infiltrate the ICS network and disable
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Table 2: Subsets of MITRE ATT&CK utilized on four PLCs in the case
studies

Manipulation] Loss [Denial Denial| Man Net kUnauthorized
PLC of of of of |in the S;Eﬁﬁf Command
Control |Availability] View |[ControlMiddle J Message

SEL RTAC

3505 v v v
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M291 v v v v v
MicroLogix]

1100 v v v v v v
MicroLogix]

1400 v v v v v v

the controller from running the control logic. IT attacks are out of the
scope of this paper. While in the ICS network, We also assume that the
attacker has the following capabilities:

m Reading the communication between a PLC and an engineering
workstation.

=  Dropping or modifying any message in the communication by po-
sitioning herself as man-in-the-middle.

m Initiating a connection with a PLC to send malicious messages
remotely.

3.2 Overview of the Case Studies

We propose two novel case studies to explore IEC-61131 control logic
engine attacks on real-world PLCs used in industry settings. A control
logic engine attack is defined as “an attack that disrupts or impairs a
normal functioning of a control logic engine.” The case studies explore
cyberattacks that can stop a control-logic engine from executing a con-
trol logic. Our methodology to perform the case studies is to employ
MITRE ATT&CK [2] knowledge base on real-world PLCs to target the
control-logic engine. Specifically, the studies utilize a subset of the fol-
lowing attacks (along with their IDs) from the knowledge base to demon-
strate the control-logic engine attacks. Table 2 summarizes the attack
subsets used from MITRE ATT&CK knowledge to demonstrate control
logic engine attacks on the PLCs.

»  Manipulation of Control (T0831). The attacker can manipulate
physical process control within the industrial environment



»  Loss of Availability (T0826). The attacker can disrupt some com-
ponent in order to prevent the operator from delivering the prod-
ucts or services

»  Denial of View (T0815). The attacker can disrupt or prevent the
operator from viewing the status of an ICS environment

»  Denial of Control (T0813). The attacker can temporarily prevent
the operator from interacting with process controls

»  Man in the Middle (T0830). An attacker in the ICS network can
intercept, modify or drop the packets getting exchanged between
the engineering workstation and the PLC

»  Network Sniffing (T0842). An attacker in the ICS network can
attempt to sniff the network traffic in order to gain information on
its target

»  Unauthorised Command Message (T0855). Attackers may send
unauthorised command messages to industrial control systems de-
vices in order to make them function improperly

The first case study focuses on an SELL RTAC device equipped with
security features such as encrypted traffic and device-level access con-
trol. The RTAC has a component termed as ‘Logic engine’, responsible
for running the controller’s control logic. With this component being
the attacker’s primary concern, she positions herself as a man-in-the-
middle between the engineering software and the PLC to prevent the
controller from executing the control logic in two ways. 1) By modifying
the packet responsible for starting the logic engine 2) By dropping this
packet entirely. Note that the initial communication with the controller
is encrypted using transport layer security (TLS). Unencrypted commu-
nication begins once a legitimate user has logged in, thereby making the
man-in-the-middle attack possible. For details, see Section 1.4.

The second case study focuses on traditional PLCs that have no built-
in security features. It involves three PLCs, Modicon M221, MicroLogix
1100, and MicroLogix 1400. These PLCs differ from the RTAC in two
ways: Firstly, these PLCs do not have a separate logic engine, and the
processor takes up this role. Depending on the controller type, the PLC
either needs to be in ‘run’ mode or given a ‘start controller’ command
to run the control logic. Secondly, unlike the case for SEL-RTAC, all
communication done with most of the PLCs is unencrypted. To attack
the control logic engine, the attacker can create a well-crafted message
and then send it to the PLC to remotely change its state. For details,
see Section 1.5.
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Message to start the logic engine on SEL RTAC 3505

o oo se 2FUNCion  rSassionID o co a8 0a 70 co ag
0a 96 cCode: Start 39 35 20\sc 6b od 48 47 50 18
24 00 96 99 00’00 [00 00 00 15|20 00 00 00 cd 55
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Message to stop the logic engine on SEL RTAC 3505
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0a 96 cCoderStop 39 35 24\f4 6b 0d 4b 2b 50 18
03 fd 96 99 00'\oo [00 00 00 15|20 00 00 00 cd 55
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[ Unknown Static Field: Remains same over different sessions
Il Unknown Dynamic Field : varies over different sessions

Figure 2: Messages sent by AcSELerator software to SEL. RTAC 3505
to start and stop logic engine

4. Case Study I: SEL-3505 RTAC

4.1 Controller Details

SEL-3505 Real-Time Automation Controller is developed by Schweitzer
Engineering Laboratories equipped with an IEC 61131 control logic en-
gine. It has a web interface to monitor and configure the network in-
terface, system logs, user accounts, and security settings. The control
engineer can write the control logic, protocol communication configura-
tion, read/write projects, and start or stop the logic engine using the
AcSELerator RTAC SEL-5033 software [17].

In terms of device-level security, RTAC uses ex-GUARD [10], a whitelist
based system to control the execution of different tasks. It blocks any
tasks from operation [17], not approved by the whitelist. The RTAC 3505
communicates with the AcSELerator software on port 5432. Most com-
munication, including session establishment, user authentication, and
reading and writing project on RTAC, is encrypted using TLS encryp-
tion. However, after a user logs in, the controller opens another port,
1217, and starts a second communication channel for sharing the state
of RTAC in real-time. Surprisingly, the communication on port 1217 is
unencrypted.
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4.2 Vulnerability

We explore the RTAC communication internals and find that the
RTAC sends the unencrypted commands on port 1217 for starting or
stopping the logic engine. We further identify the packets carrying the
commands. We also reverse engineer the commands to understand func-
tion codes and other fields such as session ID. Figure 2 shows the two
request packets sent by AcSELerator to the RTAC to start and stop the
logic engine. We find that the session ID is incremented by three in every
new session, and the function code for starting and stopping the logic
engine is 0x10 and 0x11 respectively. We also find that the rest of the
messages remain the same in different sessions (identified as unknown
static fields) and do not require semantic knowledge for the attacks.

4.3 MITRE ATT&CK

We utilize the following attacks from the MITRE ATT&CK knowl-
edge base for the case study.

Network Sniffing (T0842). Network Sniffing is the first step in
finding the vulnerabilities and launching our final attack. Since the at-
tacker’s machine is on the same network as the legitimate engineering
workstation and the controller, she can easily sniff the network traf-
fic between the legitimate parties to find ways of attacking her target.
Through sniffing, we can find the port on which the communication is
unencrypted and the necessary fields for designing our Ettercap filters

[1].

Man in the Middle (T0830). After sniffing the network traffic
and identifying the packets responsible for starting/stopping the logic
engine, the attacker develops Ettercap filters, poisons the ARP cache of
the target machines, and positions herself as man-in-the-middle between
the AcSELerator software and the SEL RTAC device in order to either
modify the content of the packet going from the engineering software to
the device or to drop this packet entirely.

Manipulation of Control (T0831). This attack is a continuation
of the above-mentioned man-in-the-middle attack. As a result of the
steps she takes to launch a man-in-the-middle attack, she can stop the
control logic engine from running the control logic on the PLC, which
ultimately stops executing the underlying physical process.
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Pseudocode for RTACilters

Input: TCP packet
1: if (packet _src =AcSELerator & packet dst =RTAC & packet port =1217)
2: if (packet_payload contains (static fields) )
3: Modify/Drop

4.4 Attack Implementation

Using the derived information, we developed two Ettercap filters (Drop-
Filter & Start-StopFilter) that can successfully identify the messages
containing the logic engine ‘start’ and ‘stop’ command, modify them
(convert ‘start’ to ‘stop’ and vice versa), or drop them all together to
stop the logic engine or block the control engineer from accessing the
logic engine.

The filters first identify the messages from the AcSELerator to RTAC
using the respective IP address and port 1217. As shown in figure 2,
a big chunk of the messages containing ‘start’ and ‘stop’ commands re-
mains same in different sessions, termed as unknown static field. The
filters search these static bytes in the TCP payload of the message to
identify the right message. After correctly identifying the message, the
DropFilter can use the “drop()” command to drop this message. Simi-
larly, the Start-StopFilter can change the function code located at 15th
index in the TCP payload from start (0x10) to stop (0x11) and vice
versa.

4.5 Evaluation

4.5.1 Experimental Settings.. We evaluate the control logic
engine attack on a power substation consisting of an SEL-3505 RTAC
connected to an engineering workstation, a circuit breaker, and an em-
ulated voltage measurement device designed to behave as a voltmeter.
The RTAC is configured to open the circuit breaker when the voltmeter
reports a voltage level higher than a given threshold. The operators in
the control center configure the threshold. If the circuit breaker does
not open quickly after the voltage rises too high, expensive power equip-
ment will be damaged or destroyed. The system is monitored from an
HMI shown in Figure 3a. Note that in our evaluation system, the “vR-
TAC” shows the system’s ground truth state even if the SEL RTAC has
failed. It shows the real-time dispute between the true state and what
the RTAC is reporting during the attack.
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(a) HMI showing ground truth (left) and SEL RTAC state (right)
for a circuit breaker (red means closed) and voltmeter with a
given over-voltage protection threshold
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(b) HMI showing SEL RTAC is no longer reporting new values
while voltage has surpassed the threshold
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(¢) HMI showing updated SEL RTAC after the logic engine is
enabled and the circuit breaker is now open (green means open)

Figure 3: The figures show the effect of control engine attack on SEL
RTAC
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4.5.2 Attack Execution and Evaluation.. When the SEL
RTAC 3505 first starts up, it automatically enables the logic engine, so
the first step was to stop the logic engine. This is a typical operation
when system maintenance or reprogramming is needed. At this point,
we launch Ettercap’s ARP spoofing attack against the RTAC and the
engineering workstation along with the developed packet filters. When
an operator sends the command to start the logic engine, it is inter-
cepted by the attacker, and the function code is modified or the packet
is dropped before it reaches the RTAC, so the logic engine never starts.

When the logic engine fails to start due to this attack, even if multiple
start commands are sent, the RTAC is not able to control or monitor the
power system devices. If the voltmeter detects a high voltage, such as
from a short circuit in the system, there is no longer a controller in place
to open the circuit breaker. Therefore the power is allowed to flow and
can reach critical devices such as transformers and damage or destroy
these devices. This requires expensive repairs or equipment replacement
and could result in a power outage. This state from our evaluation is
shown in Figure 3b. As shown, the SEL RTAC is no longer reporting
an up-to-date value for the voltage, and the breaker is not being opened
when the voltage is above the threshold.

Once the Ettercap attack is stopped, an operator is able to restart
the RTAC’s logic engine. The RTAC would then be able to detect the
high voltage from the voltmeter and open the circuit breaker, but in an
operational power system with real-time requirements this action would
be far too late to prevent damage to the system. Figure 3c shows the
state after the RTAC logic engine has been enabled. Finally, the breaker
has been opened, but this action is unable to prevent the major damage
that would have already occurred in an operational power system.

5. Case Study II: Traditional PLCs

The case study involves the PLCs of two vendors: Schneider Electric’s
Modicon M221, and Allen-Bradley’s MicroLogix 1400 & 1100. Unlike
SEL RTAC (refer to Section 1.4), the PLCs do not have the security fea-
tures to protect the communication and PLC device such as encryption
and access-control.

5.1 Case Study II (a): Schneider Electric’s
Modicon M221

5.1.1 Controller Details. Schneider Electric Modicon M221
is a nano PLC made to control manufacturing processes. A control
engineer can write the control logic, monitor the physical process and
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control state of M221 using the vendor-provided engineering software,
SoMachine Basic. SoMachine Basic supports two IEC-61131 languages,
i.e., Ladder diagram (LD) and Instruction list (IL), to write the control
logic. The engineer can download a control logic to the PLC (write
on PLC’s memory). The engineer can also start or stop the execution
of control logic, i.e., logic engine on M221 via SoMachine Basic. The
communication between M221 and SoMachine-basic is unencrypted and
uses a proprietary protocol on port 502. The protocol is encapsulated
in Modbus/TCP. M221 only allows one connection at a time.

5.1.2 Vulnerability. Other than the fact that the network
communication between the M221 PLC and its engineering software is
not encrypted, we exploit two more features of the PLC. 1) The PLC’s
state (which enables or disables it from running the control logic pro-
gram) can be changed remotely via the engineering software. 2) The
PLC only allows one engineering software to connect to it at a time.

5.1.3 MITRE ATT&CK.  The case study utilizes the following
attacks from the MITRE ATT&CK knowledge base.

Network Sniffing (T0842). This again is the first of the steps that the
attacker takes in order to launch her final attack. It gives her the ability
to sniff the network traffic between the engineering software, SoMachine
Basic, and the PLC itself and then figure out interesting and important
features (such as the protocol information) which could help her reach
her target.

Unauthorised command message (T0855). Since the communication
with the PLC is unencrypted, the attacker can send crafted messages
to the PLC remotely. Using the protocol information derived as a result
of the above mentioned step, she creates a message and sends it to the
PLC that stops it from running the control logic program.

Loss of Availability (T0826). Since M221 allows only one machine to
connect and communicate with it, the attacker can make it unavailable
for control engineers by not closing the session it establishes as part of
her previous attack.

Denial of Control (T0813). Similar to the above attack, in this case,
the attacker does not close the session with the PLC which prevents the
control engineer from interacting with the process control.
Manipulation of Control (T0831). As mentioned in the case of SEL
RTAC, this attack is the ultimate goal of the attacker. She uses network
sniffing as well as unauthorised command message attack to stop the
controller from running the control logic program.
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Figure 4: Top-view of the fully-functional conveyor belt model

5.1.4 Attack Implementation. We used differential analysis
and some manual efforts to reverse engineer the M221 proprietary pro-
tocol and identified the packets sent by the SoMachine-Basic software
to start and stop the PLC logic engine. Figure 5a and 5b shows the
packets. The function code 0x40 and 0x41 is used to start and stop the
controller respectively. If the engineering software’s request message is
successful and accepted by the PLC, it sends back a success message to
acknowledge the change as shown in Figure 5c¢. Using this information,
we wrote a python script that first establishes a session with the Mod-
icon M221 PLC and then sends crafted messages to start and stop the
execution of control logic running on the PLC.

5.1.5 Experimental Settings. We evaluate the attack on
a lab functional model of a real conveyor belt used in an industrial
environment. Figure 4 shows the model details. The conveyor belt sorts
different types of objects with the help of sensors and handles powers
by air solenoid. The system is controlled by Modicon M221 PLC. The
SoMachine Basic software runs on a Windows 7 Virtual Machine while
the attack scripts run on Ubuntu 16.04 Virtual Machine. We assume
the attacker has infiltrated the ICS network so the PLC, the engineering
workstation and the attacker’s machine are on the same network.

5.1.6 Attack Execution and Evaluation. Through network
scanning, the attacker identifies the PL.C’s IP address and then launches
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Start
J000 00 80 f4 oe 5b 39 oo Modbus;7 Session; Controller
0010 Raes 05 8c 40 00 8o Functionee 1D 1 Request
poo AAUESS . 1o 01 £6 caCode  abde do 13650 hs
03Y6d 95 df 00 00 13 58 00 00 00 0GP 5allzbllae]

(a) Request message to “START” the Modicon

M221 PLC
Stop
2000 00 80 f4 e 5b 39 oo Modbus,; Session; Controller
0010 3235 46 40 00 80 Functionee ID 1 Request
000 AAAMESSC 1 01 £6 6a Code 4e do 13 ez s0t18
2030 03}65 95 df 00 00 13 21 00 00 00 O [sll41]
0

(b) Request message to “STOP” the Modicon M221
PLC

000 00 50 56 27 24 f7 oo Modbusye Session; o~ 2c oo
o 00 32 08 5f 00 00 40 Functioree D Success

020 0a 67 01 6 c5 46 4e (ode  dba bs 3THA50NIS
2 11 1c 47 54 00 00 13 58 00 00 00 0Z wH{5a|[Bbllfe]

(c) Response from the Modicon M221 PLC with
success function code

Figure 5: Messages sent to start and stop the Modicon M221 PLC

the attack program. The attacker first establishes a Modbus protocol
session with the Modicon M221 PLC and then sends the ‘Stop con-
troller’ request to the PLC. Upon receiving this request, the PLC stops
executing the control logic, halting the physical process. The PLC’s
functionality of allowing only one connection at a time disables the con-
trol engineer to communicate with the PLC to run the ‘Start controller’
command as long as the attacker keeps the Modbus session running.

5.2 Case Study II (b): Allen-Bradley’s
MicroLogix 1400 & 1100

5.2.1 Controller Details.. Allen-Bradley MicroLogix 1400
and 1100 are from the MicroLogix family and have some similarities.
Both the PLCs can be monitored and controlled by RSLogix 500 engi-
neering software and use unencrypted PCCC protocol encapsulated in
EtherNet/IP to communicate with RSLogix [24]. RSLogix supports lad-
der diagram (LD) to write the control logic. After connecting with the
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Figure 6: Messages sent to change the Mode of Micrologix 1400 and
1100 PLCs

PLC, the control engineer can upload the control logic (read the control-
logic running on the PLC) or download the newly created logic on the
PLC (write on PLC’s memory). Both PLCs have three modes of opera-
tion; Run, Program, and Remote. In ‘Run’ mode, the PLC executes the
control logic and controls the physical process. To do the maintenance
or change the control logic, the user has to put the PLC in ‘Program’
mode to make any changes. The PLC’s logic engine pauses while it is in
‘Program’ mode. Hence, it does not execute any control logic as long as
it remains in this mode. The user can physically change the mode from
the CLI interface provided on both of these PLCs. However, generally,
for operational ease, it is placed in ‘Remote’ mode, which allows the
control engineer to change the mode from ‘Run’ to ‘Program’ and vice
versa remotely from the engineering software. Both the PLCs use unen-
crypted PCCC protocol encapsulated in EtherNet/IP to communicate
with the engineering software.

5.2.2 Vulnerability. We exploit an inherent functionality in
MicroLogix PLCs to change operational modes to ‘Run’, ‘Program’, and
‘Remote’, where the PLCs in ‘Program’ do not execute control logic and
wait for an operator to update their control logic and configurations.
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5.2.3 MITRE ATT&CK. We employ the following attacks
from the MITRE ATT&CK knowledge base for the case study on Mi-
croLogix PLCs.

Network Sniffing (T0842). The attacker uses network sniffing to find the
communication protocol between the PLC and its engineering software.
She determines the packets responsible for changing the PLC state in
order to halt the physical process from running.

Unauthorised command message (T0855). Using the information de-
rived, she creates a well crafted message that can remotely change the
PLC state from ‘run’ to ‘program’. This would stop the control logic
program from running.

Manipulation of Control (TO831). As a result of the above attack,
the attacker is able to disrupt the control logic program from getting
executed on the PLC which halts the physical process it controls.
Denial of Control (T0813). Since the attacker changes the state of the
PLC from ‘run’ to ‘program’, she temporarily prevents the control engi-
neers from interacting with the process controls.

Man in the Middle (TO830). Along with changing the state of the PLC
and halting the physical process, the attacker also wishes to hide this
change of state from the control engineer. Hence, she poisons the ARP
cache of the engineering software and the PL.C and then positions herself
as man-in-the-middle between her targets to modify the PLC state from
‘program’ to ‘run’ when the engineering software requests to read the
state.

Denial of View (T0815). The above Man in the Middle attack deceives
the control engineer who now assumes the PLC is still in ‘Run’ mode
controlling the physical process while, in reality, the process has been
halted.

5.2.4 Attack Implementation. Through manual reverse en-
gineering, we successfully identified the request messages sent by RSLogix
to change the mode of the PLC to Remote-Run or Remote-Program.
Figure 6a and 6b show the messages sent to put the PLC in Remote-
Run and Remote-Program mode. As shown in the figures, the function
code 0x80 is used to change the mode. The function code is followed by
0x01 for Remote-Run mode or 0x06 for Remote-Program. We also found
that the RSLogix software periodically inquires about the status of the
PLC. As shown in figure 7a, the engineering software sends a request
message with function code 0x03 to inquire about the status of the PLC.
The differential analysis of the response messages during Remote-Run
and Remote-Program mode shows that a function code of 0x21 is used
for Remote-Run mode (fig. 7b) while 0x26 is used for Remote-Program
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Figure 7: Periodic status inquiry and response from MicroLogix 1400
and 1100

mode (fig. 7c). Using this information, we developed a program that ini-
tiates an ENIP session with the target PLC and sends the mode-change
messages to put the PLC in Remote-Program mode, which stops the
execution of control logic on the PLC. Since the RSLogix software peri-
odically inquires about the status, the change in mode can be detected
by the control engineer. Thus, to deceive the RSLogix software, we de-
veloped an Ettercap filter that detects the status response message and
changes Remote-Program’s function code to Remote-Run.

5.2.5 Experimental Settings. Since both Micrologix 1400
and 1100 use the same communication protocol and function codes, we
tested the logic engine attack on Micrologix 1400 connected with the lab
functional model of an elevator. The elevator model has four floors and
operates like a real elevator as shown in figure 8. A user can select a
floor both from inside and outside the elevator as an input to the PLC.
In response, the PLC moves the elevator to the desired floor. RSLogix
500 can communicate with the PLC. It runs on a Windows 7 Virtual
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Figure 8: Front-view of the fully-functional elevator model

Machine (engineering workstation). The attacker uses a Ubuntu 18.04.3
LTS machine. Like the previous experiments, the PLC, engineering
workstation, and attacker machine are in the same network.

5.2.6 Attack Execution and Evaluation. The attacker first
performs a man-in-the-middle using ARP poisoning and establishes an
ENIP session with the Micrologix 1400 PLC controlling the elevator.
The attacker then sends a request message to the PLC to change the
mode to Remote-Program, due to which the PLC stops executing the
control logic, resulting in halting the elevator operation. To prevent
the control engineer from knowing the current status of the PLC, the
attacker launches the Ettercap filters explained in the previous section.
The filter changes the Remote-Program function code to Remote-Run.
In this way, the control engineer is unaware of the attack while the
elevator is no longer operating.

6. Mitigation

The main issue for most of the PLCs is that the communication is
unencrypted. While RTAC still employs TLS for most of its commu-
nication, the one that occurs on port 1217 is still not encrypted which
makes it easier for attackers to reverse engineer the protocol and launch
an attack of their choice.
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PLCs like Modicon M221 and Micrologix 1400 have some level of secu-
rity in the form of passwords. These PLCS use password authentication
schemes to protect the control logic from being read and, in some cases,
written by unauthorised users. Unfortunately, the attackers can change
the PLCs’ state to prevent the control logic from running without the
need for authentication. It is, therefore, suggested to employ passwords
for changing the state of the PLC as well.

Moreover, M221 PLC also has an intrinsic default feature that allows
unauthorised users to connect to it without the need for authentication.
It also only allows one user to connect to it at a time. This leaves a room
for attacks that require initiating a successful connection with the PLC
such as the one we discussed in our study. The attacker connects with
the PLC, stops the controller from running the control logic program and
then keeps the session active to disallow legitimate field engineers from
taking control of the PLC. In order to prevent these kinds of attacks,
password protection should be employed for connecting to the PLC as
well.

Man in the middle attacks can be prevented by techniques like DHCP
snooping and ARP inspection [3].

7. Conclusion

We presented a new dimension of control-logic attacks on the PLCs.
Instead of injecting a malicious control-logic into a PLC, our attacks
targeted the IEC-61131 control-logic engine responsible for executing a
PLC control logic. We successfully employed the attacks from MITRE
ATT&CK knowledge base to demonstrate our control logic engine at-
tacks as case-studies on four real PLCs, i.e., SEL-3505 RTAC, Modicon
M221, and MicroLogix 1400 and 1100. The case studies showed a real-
world impact of halting three physical processes during operation, i.e.,
power substation, conveyor belt, and elevator, and facilitate the ICS re-
search community and industry to understand the control logic engine’s
attack vectors.
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