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ABSTRACT
3D printing constructs physical objects by building and stacking
layers according to the CAD (Computer-aided Design) information.
Attackers target a printing object by manipulating the printing pa-
rameters such as nozzle movement and temperature. The existing
research on secure 3D printing mostly focuses on nozzle-kinetics,
while attacks on filament-kinetics and thermodynamics can also
damage the printed object. The detection of these attacks mainly
relies on creating master-profile and machine learning by print-
ing every unique object in a protected environment. In the fourth
industrial revolution, such an approach is not suitable due to mass-
customization rather than bulk production. This paper presents
Sophos, a framework to detect nozzle-kinetic, filament-kinetic and
thermodynamic attacks on the fused deposition modeling (FDM)-
based 3D printing process. Sophos design does not require any prior
learning for every unique object. It can detect the attacks on the
first print using spatiotemporal G-code modeling, aligning it with
the Industry 4.0 vision. Sophos is scalable and supports modular
upgrades to suit different printing requirements. Its design allows
the detection threshold to be reduced conveniently to as low as
the 3D printer’s resolution, shifting the game to a more interesting
study of attack patterns than attack magnitudes.
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1 INTRODUCTION
3D printing is adopted as an essential element of Industry 4.0 [1]
and is increasingly utilized to print critical functional components
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of physical processes such as automobiles and airplanes. Thus, the
cybersecurity of 3D printing process is a growing concern. Among
the seven categories of additive manufacturing processes defined
by American Society for Testing and Materials (ASTM) 52900:2015,
Material Extrusion based technique, Fused Deposition Modeling
(FDM) captures around 50% of 3D printing market share [2]. In
FDM printing, a molten filament is extruded from a hot nozzle that
moves in 2-dimensions to create a thin layer geometry, stacked
with multiple layers to print a complete 3D object.

FDM is a complex process [3] involving multiple printing param-
eters that influence the mechanical properties of the final object.
Researchers have demonstrated that the object properties can be
altered by manipulating the manufacturing parameters, such as ob-
ject orientation [4], printer’s fan speed [5], nozzle temperature [6],
printing bed temperature [7], fusing material patterns [8], and com-
bination of properties [3].

The 3D printing process can be attacked for different objectives;
the most common ones are intellectual property (IP) theft and sab-
otage attacks [9]. As IP theft attacks can be completely passive, the
research to protect against IP theft attack focuses around protect-
ing the cyber-domain information and obfuscating the unavoidable
side-channels (such as acoustic signals from the printer motors).

Sabotage attack is a different category where the attacker tar-
gets a 3D printing environment to weaken, damage, or destroy
a 3D printing object by causing geometrical nonconformity and
workpiece deformation. The focus of this paper is to detect low
profile sabotage attacks where small malicious modifications or
deviations in the manufacturing parameters compromise the object
properties without causing any visual deformation [5, 10, 11]. The
modifications may be achieved by targeting the nozzle-kinetics,
filament-kinetics, or thermodynamics of the printing process. Re-
searchers have proposed multiple techniques to monitor nozzle-
kinetics (covered in related work), but as per our knowledge, no
work is available in sabotage-attacks detection that utilizes filament-
kinetics, nozzle-kinetics, and thermodynamics in a consolidated
framework.

To find (malicious) deviations in a 3D printing object, Sophos
utilizes the printing instructions file (G-code) as a reference to
expected behavior. G-code is a series of instructions that defines
how an object should be printed but does not provide an instan-
taneous state of the process. Using the G-code, Sophos employs
spatiotemporal modeling and interpolation functions to derive a
comprehensive set of desired instantaneous printing state.

Sophos utilizes the layer change as a logical marker to split the
evaluation process on a per-layer basis. This split transforms a
3D object into a series of 2D shapes for simplified analysis and
helps in early attack detection (as soon as the first attacked layer
is printed). The printing process is presented in space and time
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domains. In the space-domain, each layer is represented by a bitmap
where each pixel is an instance of the printing state. The bitmap
representation provides scalability property to the framework. By
merely adjusting the pixel dimensions and the acquisition sensors’
resolution, the system’s resolution can be improved. For the time-
domain analysis, Sophos generates the timing profile from the
reference design file (G-code file) and compares it with the acquired
data to identify timing integrity issues. From the third standpoint,
Sophos tests the integrity of the toolpath sequence (the complete
path that nozzle takes during the printing) by verifying the move
instruction vertices and the nozzle deviation from the desired path.
Sophos also evaluates the filament-kinetic and thermodynamic
profiles to reliably detect the attacks that do not use nozzle-kinetic
deviations.

We implement and evaluate Sophos on forty different attack
instances of sixteen types of attacks on a 3D printer. The results
show that Sophos can detect all attack instances successfully with
zero false negatives (FN) and false positives (FP).

The rest of the paper is organized as follows. Section 2 describes
the background and related work. Sophos framework for attack
detection is presented in section 3. Sections 4 describes the im-
plementation of the Sophos. Section 5 presents the results and
evaluation, followed by limitations, future work and conclusion.

2 RELATEDWORK
The part of 3D printing security that relates to this work is the
detection of sabotage attacks. Various techniques to address the
print integrity attacks on the FDM process have been proposed
by researchers. Almost all the efforts are focused on acquiring the
printer state through variety of independently deployed sensors,
and not relying on the system’s feedback. Chhetri et al. [12] was
the first to use audio sensors for 3D printer’s security by picking
the acoustic signals generated by the stepper motors. The approach
resulted in overall 77% accuracy in detecting path and speed modifi-
cations. For small deviations, 3 mm or less, the true positive rate was
71% and false positive rate was over 30%. Belikovetsky et al. [13]
used the acoustic sensor of a cell phone with a different algorithm
to achieve higher accuracy and improved resolution. The solution
was able to detect modifications that sustain for at least 1 second.
If modification pertains to reordering of commands, the minimum
detectable threshold changes to 2.6 seconds.

Gao et al. [5] utilized IMU sensors and cameras (for voice and
video signal), and applied sensor fusion techniques and random
forest to detect the attack on kinetic properties. The selected test
cases were significantly distant from the original print; around
20% change in infill, change of fan speed from 100% to 25%, and
printing speed change from 30 mm/s to 120 mm/sec. The accuracy
of the solution under small deviations was not ascertained. Wu
et al. [14] used static and moving camera images to detect infill
pattern attacks. The injected attack patterns were big enough to
cover around 10-20% of the infill area. Bayens et al. [15] used a mic,
IMU sensors and camera to verify the infill pattern. Specially doped
filament was used to verify material integrity via CT Scan. The infill
pattern selected for testing the technique were Honeycomb and
Rectilinear with 20%, 40% and 60% density, which is a big difference
to detect.

Gatlin et al. [16] conducted an interesting study of creating power
signature profile of an object by measuring the electric current
drawn by the stepper motors during printing. The approach re-
quired multiple prints to create a master profile, and could not
detect individual layer thickness variations and filament extrusion
attacks. Yu et al. [17] extended the previous work [12] and added
more side-channels to improve the results. By studying acoustic,
magnetic and visual information, the model successfully detected a
deviation of 4 mm long, and authors mentioned the limitation of
identifying smaller changes.

These approaches do not solve the problem of filament extrusion
rate variations. If an attacker stops the filament extrusion motor
or changes its speed, the object specifications will be changed.
Camera-based inspection technique proposed by Wu et al. [14]
may work (though not tested) in one case when the attacker halts
the extrusion motor completely; however if only the density is
changed by reducing the filament motor’s speed, it seems unlikely
that a visual camera will detect the change. Another challenge
with camera based approach is that the printhead on top of the
object obstructs the camera’s view, and it is not feasible to pause
the printing to capture a clean image after each layer.

The minimum detectable change in the existing techniques is not
small enough to restrict feasible attacks. An attacker can damage
the object by making 1 mm changes in dimensions, or by injecting
or removing commands of 1 second, or simply by reducing the
extrusion speed. Researchers have already shown the impact of
some of those attacks and their practicality [10, 18].

Another important limitation in most of the existing work is the
learning phase, that requires one or more training prints of each
unique object in a protected environment to create its master profile.
This requirement limits the use cases to repetitive production setups,
and is not aligned with Industry 4.0 vision of mass customization.

3 PROPOSED ATTACK DETECTION
FRAMEWORK - SOPHOS

To ascertain the process integrity in 3D printing, we propose Sophos
framework.

3.1 Overview of Sophos Framework
Figure 1 provides an overview of Sophos, our proposed framework
for checking integrity of FDM-based 3D printing process. Sophos
deploys independent sensors to obtain the reliable state of printing
process, and uses G-code file as a ‘source of truth’ to verify the
acquired sensors’ data. We prefer G-code over stereolithography
(STL) file because it contains more design parameters to define
the final object characteristics. Sophos transforms both the G-code
file and the sensors data into comparable space and time-domain
vectors. In addition to analyzing the printing process in space and
time domains, Sophos checks the integrity of the G-code’s execution
on a per-instruction basis.

3.2 Acquiring and Transforming Sensor-data
Sophosmeasures the critical parameters of filament-kinetics, nozzle-
kinetics and thermodynamics of the printing process, including
location of the printhead in x,y and z axes, length of the filament
extruded (e), an temperature of the nozzle and the printing bed.
For acquisition of the state of these distinct physical processes, the
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Figure 1: Sophos framework for secure 3D printing process

sampling rate is worked out inline with the suitability for the pa-
rameter while avoiding over-burdening the acquisition system. For
example, nozzle location changes much faster than its temperature;
thus the former is sampled at a higher rate.

3.2.1 Location-data Acquisition. The printer firmware converts a
G-code move instruction to electrical signals, and applies them to
the relevant stepper motors. The motors draw electric current to
convert electrical energy to motor rotation. The rotor is mechan-
ically coupled (via belts/shafts/gears) to the target object (print-
head or filament) to accomplish the desired movement. There are
multiple options to measure this movement. Acoustic sensors are
susceptible to common environmental noises. It is also complicated
to accurately distinguish between the noises of different motors,
and the direction of move. We evaluated accelerometers, but found
them to be too sensitive to the usual vibrations on the printing
table. Electrical current has direct relation to the motor rotation,
but with changing load of the driving shafts/belts, the profile may
change. Sophos utilizes optical encoders for the movement tracking.
The rotary optical encoders have a pair of LED and photo-detector
with a disc, marked with opaque and transparent patterns, rotating
through a slot between them generating electrical pulses. Sophos
uses rotary encoders to detect x,y and e axes movement. A lin-
ear optical encoder, that replaces the disc with a marked strip, is
used for detecting the printing bed movement. Sophos data acqui-
sition performance depends upon the sensors’ resolution, and the
deployment quality.

3.2.2 Temperature Measurement. Printing bed and the extrusion
nozzle are the two important thermodynamic components of a
FDM printer. Sophos uses a thermistor with simple voltage divider
circuit to measure printing bed temperature. For measuring nozzle
temperature, Sophos utilizes thermocouple with driver circuit to
amplify the weak signal. These are commonly available sensors,
and used by researchers for studying thermal stresses in FDM [19].

3.2.3 Layer-by-layer Analysis. We consider FDM printer as a sys-
tem with G-code file as the input, and printed object as the system’s
output. We represent a printed object as the set of instantaneous
states of the printer; the states can be represented in time or space-
domain.
2DMulti-attributeMatrices (LM). Sophos uses the layer-change
event as a logical marker to transform 3D object into a series of
multi-attribute 2D arrays. We denote the array as the layer-map
(LM𝑘 ) where ‘k’ represents the k𝑡ℎ layer. Each pixel 𝐿𝑀𝑘𝑖,𝑗 of the
k𝑡ℎ layer is defined in Equation 1

𝐿𝑀𝑘𝑖,𝑗 = [𝑡,𝑇 , 𝑒, 𝑐] (1)

where ’t’, ‘T’, ’e’ and ’c’ are the time of print of the pixel, nozzle
temperature, length of the filament consumed, and the pixel’s color
(extrusion status) respectively. LM provides the space-domain view
for each layer, but does not cater for layer transition event. Sophos
represents the layer-change (LC) as a uni-dimensional array as
shown in Equation 2

𝐿𝐶 = {𝑙𝑐1, 𝑙𝑐2, . . . , 𝑙𝑐𝑛} (2)

where lc𝑖 represents the z-axis relative displacement between the
nozzle and the printing bed after the completion of i𝑡ℎ layer. By
combining 1 and 2, we can represent the complete 3D printing
process as shown in Equation 3.

3𝐷_𝑜𝑏 𝑗𝑒𝑐𝑡 = {{𝐿𝑀1, 𝑙𝑐1}, {𝐿𝑀2, 𝑙𝑐2} . . . {𝐿𝑀𝑛, 𝑙𝑐𝑛}} (3)

Multiattribute Timed Samples Sequence (TP). Due to the im-
portance of timing integrity in 3D printing process, Sophos ex-
amines the process in time-domain as well. As in space-domain,
we use layer-change event as boundary, and calculate the set of
time-indexed samples named as ‘Time Profile’ (TP) for each layer.
A single sample is expressed as a set of attributes as shown in
Equation 4.

𝑇𝑃𝑘 𝑡
= {𝑥,𝑦, 𝑒, 𝑐,𝑇𝑛,𝑇𝑏 } (4)

where x,y represent the printhead location, T𝑛 and T𝑏 are noz-
zle and bed temperatures. A 3D printed object can be completely
represented in time-domain by a set of TPs and LC for each layer.

3𝐷_𝑜𝑏 𝑗𝑒𝑐𝑡 = {{𝑇𝑃1, 𝑙𝑐1}, {𝑇𝑃2, 𝑙𝑐2} . . . {𝑇𝑃𝑛, 𝑙𝑐𝑛}} (5)

Equation 5 provides time-domain standpoint to view the process
integrity. Equations 3 and 5 transformation helps in identifying
the anomalies after each layer, instead of waiting for the object to
be completely printed. Per-layer analysis also helps in examining
internal layers infill issues that may be concealed in the final object.

3.3 G-code Transformation
The G-code file is a series of instructions provided to the printer.
It contains move instructions in x,y,z, and e axes, and specifies
parameters like temperature values, max-speed, max-acceleration
etc. The slicer software that generates G-code file provides an esti-
mated time taken to print each layer, with no breakdown of this
duration (typically 10s to 100s of seconds). On the contrary, the
Sophos sensors are providing state information at the sampling
interval ( in milliseconds). For instantaneous comparison of the
G-code and the sensors’ time-samples sequence, we convert the
G-code instruction-set into a synthetic time-sampled sequence, and
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Algorithm 1 : Path profiling and attribute assignment

Output: Updated Layer Map (LM𝑘 )
Input: Points A, B , Layer Map (LM𝑘 )
Calculate major Axis x or y, and slope of AB
∀ i ∈ majorAxis

Find j in minorAxis← 10 * (Round to 0.1 * (slope * i))
∀ pixel (i,j) in LM𝑘 , assign Attributes:

Time_of_print(i,j)← (i / majorAxis) * Δt
Nozzle_temperature (i,j)←(T_𝐴 + T_𝐵 ) / 2
Filament_length (i,j)← (i / majorAxis) * Δe

Repeat attribute assignment for filament thickness

Each pixel = 
0.1 x 0.1 mm

Saw-tooth error in 
oblique lines proportional 
to pixel resolution

Error not accumulated 
after filament thickness 
function

Green blocks represent 
0.3 mm  filament 
thickness

No pixel resolution error in single axis movements

(a) Pixel interpolation 
b/w pt A and B

(b) Output of Filament thickness 
function applied on line AB

(c) Single axis move A to B  (x or y axis)

Filament thickness 
Function

Figure 2: Path profile for move command with pixel approx-
imation error

space-domain representation. We estimate LM, TP, and bitmap
(bmp) image for each layer.
Path Profiling. The G-code move commands only provide the
end points of the move instruction. We use path profiling function
that incorporates 1𝑠𝑡 and 2𝑛𝑑 order time derivatives to estimate
the move profile complying to the max speed and acceleration
constraints defined in G-code. For pixel dimensions of 0.1 mm x
0.1 mm (used later in case study), a 20 cm x 20 cm printing bed
corresponds to 2000 x 2000 pixels matrix. The move instruction is
linear whereas the extruded filament is a 3D paste. Through filament
thickness function, we convert linear path to 2D rectangular bar,
where the width of the bar is dependent on the nozzle dimensions
and the printing profile. For moves involving single axis (x or y
axis), this conversion is lossless as seen in Figure 2 (c). For oblique
lines, the error is proportional to the angle of the line with the
nearest axis, and the pixel dimensions. However, the error does not
accumulate after applying filament thickness function, as visible in
Figure 2 (a) & (b). Third dimension (height of the extruded filament)
is examined through filament consumption and z-axis movement
(LC). For sensor-data conversion, Sophos uses a compatible set of

profiling functions based on interpolation functions to complete
any missing information between two consecutive data samples.
Path profiling and attribute-assignment algorithm is presented in
Algorithm 1. The algorithm updates the LM as per the latest steady
sample’s values.

3.4 Process Analysis for Integrity Checking
Sophos uses space-domain and time-domain representations LM,
TP and LC for six verification tests to detect attacks on the printing
process. These tests examine the process for different types of
attacks after each layer is printed.
3.4.1 Layer Geometry. In this test, each layer is examined for the
overall dimensions and shape using LM𝐺𝑐𝑜𝑑𝑒 and LM𝑆𝑒𝑛𝑠𝑜𝑟 . We
consider the infill lines as geometry features. The color or extrusion
status attribute of the layer-map is used in this test. Cumulative test
compares the overall dimensions of the object during the printing.
For the instance-based test, Sophos calculates a differential layer-
map (Equation 6) by evaluating each pixel (x𝑖 ,y𝑗 ) in the G-code
bitmap for a corresponding matching pixel in the synchronized
LM𝑆𝑒𝑛𝑠𝑜𝑟 . The vicinity threshold in synchronization function com-
pensates for benign printing deviations, sensor measurement and
filament thickness estimation functions errors.

Δ𝐿𝑀𝑘 = 𝐷𝑖 𝑓 𝑓 (𝐿𝑀𝐺𝑐𝑜𝑑𝑒 , 𝑠𝑦𝑛𝑐 (𝐿𝑀𝑆𝑒𝑛𝑠𝑜𝑟 )) (6)

With Δ𝐿𝑀𝑘 , we calculate the single biggest mismatched area, and
total mismatched area per layer. For biggest area calculation, the
criteria is to check all contiguous mismatched areas, may they be of
any irregular shape. Among other details, this algorithm generates
accurate bmp images of the desired and actual print for each layer.

3.4.2 Z-Axis Profile. The z-axis motor is engaged once the layer-
change event occurs. Z-axis movement dictates the layer thickness,
and is very small and short-lived, demanding higher resolution
sensing. To examine layer thickness, Sophos continuously monitors
the z-location through a small sliding window to attain a stable
reading across the ends of the window. To ascertain the validity of
the layer-thickness, Sophos uses LC vectors to compare individual
layer’s thickness, and object’s thickness after each layer.

3.4.3 Timing Profile. Sophos uses TP𝐺𝑐𝑜𝑑𝑒 and TP𝑆𝑒𝑛𝑠𝑜𝑟 vectors
to evaluate the timing integrity of the printing process. This analysis
is helpful in detecting printing speed attacks, in which the geometry
remains the same but the object is printed at a different speed.
Another use-case of timing profile verification is to detect printing
sequence modification attack. If the profiles deviate by more than
a specified threshold, an alert is raised. The detection threshold
depends upon the accuracy of synthesized sampling.

3.4.4 G-Code Commands Verification. The TP𝐺𝑐𝑜𝑑𝑒 is generated
through motion equations (accommodating up to 2𝑛𝑑 order deriva-
tives). The higher-order terms (such as max-jerk setting) are ig-
nored, and may result in minor inaccuracies. The G-code move
instructions provide another standpoint to analyze the process in
discrete steps. Sophos sequentially picks the G-code move com-
mands (bigger than a minimum threshold), and verifies the sensors’
acquired data. The algorithm starts by synchronizing the acquired
samples with the first selected move command. Synchronization
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Figure 3: Optical encoder deployment process

Figure 4: Sophos testbed setup

refers to the ability to find samples sub-sequence from S𝑖 (first
sample) to S𝑗 (last sample of the sub-sequence), such that,

|𝑑𝑖, 𝑗 − |𝐴𝐵 | | < 𝑡ℎ𝑑𝑖𝑠 𝐴𝑁𝐷 |𝜃𝑖, 𝑗 − 𝜃𝐴𝐵 | < 𝑡ℎ𝜃 (7)

where d𝑖, 𝑗 is the distance between S𝑖 and S𝑗 , 𝜃𝐴𝐵 is the slope of
line 𝐴𝐵 with x-axis, 𝜃𝑖, 𝑗 is the slope of line 𝑆𝑖𝑆 𝑗 and x-axis, th𝑑𝑖𝑠
and th𝜃 are the displacement and slope thresholds respectively.

Synchronization helps in translating absolute coordinates to
relative ones by calculating 𝛿x and 𝛿y (difference between point A
and sample S𝑖 ). This mechanism rules out the error accumulation
problem that could occur due to the inaccuracies in the sensor data
measurement and transformation stages of the framework. After
synchronization, Sophos sequentially picks the move commands,
and verifies if every next sample is getting monotonically closer to
B, while not deviating from the line 𝐴𝐵. Another check performed
in every command is the filament consumption check. In case, the
filament consumption changes above the allowed threshold, the

command fails the integrity check, and alert is raised. Algorithm 2
explains the verification process.

Algorithm 2 : G-code commands verification
Output: Integrity Status AND Process Logs
Input: G-code file , SensorData: FastSampleSequence
Synchronize sample series “S” with 1st command>1mm: move
from A to B
∀ i ∈ SampleSequence

Assume s𝑖 = A , if ∃ s𝑗 s.t.
|d𝑖, 𝑗 - |AB|| ≤ th𝑣𝑒𝑟𝑡𝑒𝑥 // ie. B in vicinity of (s𝑗 )
AND slope𝐴𝐵 ≡ slope(𝑠𝑖 ,𝑠 𝑗 )

if s𝑗 NotFound→ return: Sync Failed
else Sync Achieved, Verify Individual Cmds
for k in list_of_Move commands)

∀ k ∈ Gcode_Mov_Cmds
Find sample s𝑖 corresponding to vertex A
if A found:

refineVertex(A)→ s𝑖
while B found: Chronologically test fol

1. d(s𝑖+1 - 𝐵 ) ≤ d(s𝑖 - 𝐵 )
2. dist [s𝑖 -AB] ≤ th𝑝𝑜𝑖𝑛𝑡2𝑙𝑖𝑛𝑒
if B found:

refineVertex(B)→ s𝑗
else: return Cmd k failed due to {Reason}
Filament consumption test
if ((e𝑠 𝑗 – e𝑠𝑖 ) – (e𝐵 - e𝐴 ) ) ≤ th𝑓 𝑖𝑙𝑎𝑚𝑒𝑛𝑡

Command k Verified
else return Cmd k failed due to {Reason}

return Cmd verification passed

3.4.5 Thermodynamic Profile. For thermal profile verification, Sophos
uses the sensors reading against the G-code temperature value. G-
code can have legitimate temperature change instructions. Such
change may take few seconds to be completed. Sophos approxi-
mates the temperate modification phenomenon as a linear equation.
For a G-code instruction of increasing temperature by 5𝑜C, Sophos
approximation may result in temporary mismatch in expected and
actual readings. Owing to the small magnitude and duration of
error, we stick to the approximation function, and compensated for
the error using allowed threshold parameter for the number of mis-
matched samples. Sophos also requires a deviation threshold that
depends upon the benign temperature changes due to hysteresis
and the profile settings.

4 IMPLEMENTATION AND TESTBED
DETAILS

4.1 Testbed Setup
The generic Sophos framework can be implemented on any FDM
printer that allow sensors mounting for measuring the displacement
of the monitored axes; whether from the stepper motors, or directly
from the targeted moving part. After reviewing the product litera-
ture of few printers on internet, we find printers like Ultimaker3,
Prusa i3 MK3, Lulzbot TAZ6, Creality 3D Ender-3 pro to be feasible
for Sophos deployment. For this experiment, we use Ultimaker-3
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Purpose Sensor
Type

Vendor Model Number Specs Resolution as
per System
Deployment

X-axis Optical-
Rotary

US Dig-
ital

E2-512-315-NE-H-
D-B

512 cy-
cles/rev

0.1 mm

Y-axis Optical-
Rotary

US Dig-
ital

E2-512-315-NE-H-
D-B

512 cy-
cles/rev

0.1 mm

Z-axis Optical-
Linear
Strip

US Dig-
ital

LIN-500-9.5-N 500 cy-
cles/inch

0.012 mm

Filament Optical-
Rotary

US Dig-
ital

E2-2000-315-IE-E-
D-3

2000 cy-
cles/rev

0.0035 mm

Nozzle
Tempera-
ture

Thermo-
couple

Adafruit Type-k &
MAX31855

Upto 500𝑜C 0.25𝑜C

Bed Tem-
perature

Thermistor Omega SA1-TH-44006-40-
T

Upto 120𝑜C 0.2𝑜C

Table 1: Sophos sensors specifications

printer connected via Ethernet to control-PC (core i7-8700 / 16GB
RAM / Windows OS), and managed through open source Cura 4.0
software. The nozzle and the filament diameters were 0.4 mm and
2.85 mm respectively.

4.1.1 Sensors’ Selection and Deployment. Table 1 provides the list
of sensors deployed on the printer. The sensors are selected to
achieve sub-mm detection capability for the object geometry, and
1𝑜C temperature accuracy. Encoder with 4 times more pulses per
revolution is used for filament motor to partly compensate for its
slow speed. Figure 3 illustrates our sensors’ deployment method
on the printer, which is non-intrusive, simple, robust and quick to
replicate. We printed 8 mm diameter, 15 mm length PLA cylindrical
rods, and affixed them to the outer exposed end of the rotating shaft
of the measured axes. During this manual extension of shaft, we
suspect to exceed the acceptable tolerances of the axial and radial
play for the optical encoder (± 0.01 in and ±0.04 in respectively).
Exceeding the tolerance does not void the experiment, but it does
affect the accuracy slightly. Instead of investing time in removing
small mechanical coupling errors, we measured the results through
stage wise testing, and calculated the reported accuracy. If the
resultant accuracy is below the required value, a compensation
profile can be calculated on a per-axis basis.

The thermocouple is a shielded flexible wire that is conveniently
routed besides the tip of the nozzle, and secured with the help of a
heat resistant polyimide adhesive strip based platform supported
by the nozzle cover. The thermistor is secured to the printing bed
through the stick-on patch. The print quality before and after the
sensors installation is perfectly same as the sensors are very light-
weight, and do not interfere with the printing. Figure 4 presents
the implementation setup prepared for the case-study.

4.1.2 Data Accumulation. The implementation uses a Stemtera
Arduino compatible breadboard. Interrupt routines are used for fast
changing location data, while temperatures are polled periodically.
The data is sampled at two different rates.

For the sampling rate, ‘the higher the better’ philosophy does not
work well. Sophos uses sampled data to ascertain printer’s state. To
track slow movement of the filament, the sampling rate is lowered
to ensure at least one pulse between two consecutive samples. On
the other side, a too slow sampling rate may skip short critical
moves. This conflict is resolved through dual sampling rates based
on sensors’ resolution, printing speed, and data acquisition module

- as shown in Equation 8

𝑆𝑓 𝑎𝑠𝑡 𝑖 = {𝑡𝑖 , 𝑥𝑖 , 𝑦𝑖 } ; 𝑆𝑠𝑡𝑒𝑎𝑑𝑦 𝑖
= {𝑡𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑒𝑖 ,𝑇𝑛𝑖 ,𝑇𝑏𝑖 } (8)

Through experiments, we found 50 ms suitable for steady samples
for our case study. The fast sampling rate pertaining to the nozzle’s
instantaneous location is dependent on Arduino’s time to serve
single interrupt, and the rate of total interrupts generated by the
sensors at the peak printing speed. In our experiment, we found 5
ms to be optimal value for fast-samples, below which the increased
noisy data outweighed the benefit of faster sampling.

S
/No

Performance Parame-
ters

Related At-
tack

Alert Thresholds

1 Single Mismatched Area Geometry 1 mm2

2 Cumulative mismatched
area

Geometry 2% per layer, min dimen-
sion >0.2 mm

3 Nozzle Temperature Devia-
tion

Thermo-
dynamics

5𝑜C

4 Time window for sample
search

Timing Profile 2 seconds

5 Samples Mismatch per
Layer

Timing Profile 2%

6 Continuous Mismatch Du-
ration

Timing Profile 500 ms

7 Max Layer Thickness Differ-
ence

Geometry 0.05 mm for 500 ms

8 Bed Temperature Differ-
ence

Thermo-
dynamics

5𝑜C for 500 ms

9 Filament Consumption De-
viation per move

Density, Geom-
etry

5% diff per move

10 Filament Consumption De-
viation per Layer

Density, Geom-
etry

1% diff per layer

11 Max Nozzle Deviation Geometry 0.75mm⊥ tomove path
12 Max Vertex Deviation Geometry 0.75 mm

Table 2: Sophos performance thresholds

4.2 Sophos Calibration
At the start of the experiment, Sophos is calibrated once to com-
pensate for the sensing resolution, measurement, quantization and
printing process errors. The overall effect is absorbed in the mini-
mum detection values to ensure zero FP.

4.3 Finding Optimal Threshold Settings
To find the optimal threshold values, we collected traces of 20 ob-
jects of different shapes (rectangular prisms, bars, letter E), number
of layers, infill patterns and densities; and examined each parameter
for a value that would result in zero FP for the training prints. The
results are mentioned in Table 2. A brief account of the selection
process is discussed in succeeding subsections.

4.3.1 Geometry Parameters. Sophos does not only match the
outer geometry, it considers infill pattern as part of geometry, and
matches each infill line for its location and dimension. Under this
criteria, a simple rectangular prism becomes a complex geometry.
We used 7 parameters for layer geometry: biggest & cumulative
area mismatch; path & vertex deviation for G-code command, fila-
ment consumption difference per command and per layer, and max
z-axis difference. As Sophos highlights the failure’s reason, each
parameter is individually tuned to a level where Sophos passes all
benign prints.
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Acro-
nym

Attack Name Attack Mechanism Affected
Domain

FS Filament status Switch off the extruder for 1 infill command FK
FD Filament density Reduce the filament speed for 2 infill lines FK
FC Filament-kinetic

based cavity
Retract the filament for 2 infill lines 2 mm long,
Path change:Nil; Time Diff:0.4 sec

FK, NK
minimal

TN Nozzle temperature Change the nozzle temperature by ±10𝑜C in
central region of rectangular bar

THM

TB Bed temperature Change the bed temperature by 6𝑜C THM
IFP Infill pattern Swap among the Line/Triangle/Grid or other

infill patterns
FK, NK

IFD Infill density Change infill density from 20% to 21% ; 30% to
31% ; 40% to 41% (1% change at different density
levels)

FK, NK

Z1 Z-axis 1 layer Change layer thickness of a single layer by 0.1
mm

ZK

ZM Z-axis multiple lay-
ers

Change thickness of three layers by 0.04 mm
each

ZK

OG Outer geometry Change outer dimensions by 0.3 mm for a single
axis

FK, NK

DC Cavity via design
file

Create a cavity of 1x1 mm, 2x2 mm, 3x2 mm
through design file

FK, NK

PS Path sequence Modify 3 mov cmds, Δ t <1sec FK, NK
TP1 Add/delete single

move
Add 2 mm long, <1 sec cmd w/o extrusion FK, NK

TP2 Add/delete 2 moves Add 2 cmds of 2 mm and under 1sec duration
w/o filament extrusion [A>B, B>A]

FK, NK

TPM Add/delete multiple
small moves

Insert multiple cmds <1 mm each, lasting for 2
secs

NK

V Printing speed Change printing speed to cause Δ𝑡 ≥ 2sec, w/o
path change

FK, NK

FK:Filament-kinetics NK:Nozzle-kinteics THM: Thermodynamics
Table 3: Selected attacks for experiment

Figure 5: Commands re-sequencing attack trace

As part of the layer geometry integrity check, we verified the
filament consumption on per move, and per layer basis. For short
move commands (typically 1 to 5 mm), the filament consumption

may differ up to 3.5% due to sampling error. However, it is not
accumulated, and compensated in the next move. For longer moves,
the error is less than 1% in all benign cases. We selected 1% as the
alert threshold per layer and 5% for single move.

4.3.2 Thermodynamic Profile. Sophos nozzle temperature reading
is found to be 2 - 3𝑜C less than the printer’s internal sensor’s read-
ing. Sophos sensor is hosted just besides the nozzle tip and outside
the nozzle, while internal sensor is slightly more distant from the
extrusion point, and relatively closer to the heating element; thus
showing slightly higher temperature. As the difference is consis-
tent over our zone of interest, it is incorporated in the algorithm.
We also observed that the actual nozzle temperature, following a
hysteresis curve, may occasionally fluctuate by 2 - 3𝑜C. During
the attack study, we conducted mechanical testing for temperature
changes of less than 5𝑜C, and did not notice any significant effect
on properties. Therefore, to incorporate this benign fluctuation and
the approximations, we raise the alert threshold to 5𝑜C. Similarly,
we observed a temperature difference of 1-2𝑜C for the printing bed.
Many research studies on examining the impact of changing bed
temperature on the object quality, have taken ΔT as 10𝑜C, 20𝑜C,
or higher [20, 21], we find it reasonable to produce an alert at 5𝑜C
deviation.

4.3.3 Timing Profile. There are 3 timing sources involved: 1𝑠𝑡 is
the G-code file’s layer-end time, 2𝑛𝑑 is the result of Sophos mod-
eling, and 3𝑟𝑑 one is the actual time taken for the printing. After
estimating the time-profile, Sophos compensates for the difference
with G-code provided layer-printing time by distributing the error
uniformly. As we are operating on milliseconds scale, this approxi-
mation seems appropriate. However, we find out that the G-code
layer-printing time does not match with the actual printing time.
To compensate for this inaccuracy, we relaxed the time window to 2
seconds. Minimum duration for a mismatch to persist is 0.5 seconds,
and minimum 2% mismatched samples per layer are considered as
timing integrity breach.

The finalized set of parameters with zero FPR define the claimed
detection performance of Sophos. Table 2 specifies the parameters,
related attack types, and their final values that we use as the alert
thresholds.

4.3.4 Alert Generation. The implementation ensures zero FP for
each individual test by setting parameter alert thresholds beyond
the confusion zone. Thus, Sophos considers a single parameter’s
breach as a violation, and uses logical OR operation among the six
test categories as shown in Figure 1.

4.4 Process Visualization
Since Sophos works on bitmap files, it inherently provides a strong
visualization feature precisely showing each layer’s outlook at
pixel’s resolution. Sophos also points out the layer where the at-
tack is detected alongwith the print-time. It also identifies which
command in the G-code failed the integrity check. This information
helps the user to examine the changes made by the attacker, and
take remedial steps.
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(a) Image from G-code (b) Image from Sensors Data

(c) Preliminary Difference(d) Space algorithm Result

Biggest Diff = 0.32 mm2

Total mismatch < 2mm2

Final verdict: PASS

Figure 6: Detection of benign deviations

5 SOPHOS EVALUATION FOR ATTACK
DETECTION

5.1 Attacks Selection for Evaluation
To evaluate Sophos performance, we utilize the testbed and for-
mulate a set of sixteen types of filament-kinetic, nozzle-kinetic,
and dynamic-thermal attacks. The attacks are launched through
modifying the G-code file (executing by the target printer), by as-
suming a reuse of any of the existing attack techniques [22, 23]. The
nozzle-kinetics based attacks are the low-intensity variants of the
existing attacks used by researchers. Less explored filament-kinetic
attacks can create similar impact on the printed object without
involving nozzle-kinetics. Dynamic-thermal attacks do not disturb
filament or nozzle-kinetics. The attacks are performed on rectan-
gular prisms (50 mm x 50 mm x 4 mm) and rectangular bars (60
mm x 40 mm x 4 mm). The layer height is set at 0.2 mm, printing
speed at 50 mm/sec, and the infill-pattern used for attacks is "LINE"
at 45𝑜 raster angle, except for infill pattern attack. As every infill
line is considered as a part of the geometry, the selected objects are
not simple shapes. The way Sophos is designed, 45𝑜 raster-angle
caters for the highest error case for the pixel-approximation error
(refer to Figure 2). Table 3 summarizes the attacks and the affected
domains. To evaluate Sophos calibration for FP, we included the
benign versions of these attacks as part of the experiment.

5.2 Attack Detection Results
During threshold-selection exercise for the calibration of Sophos,
we crossed the confusion zone, and expect zero FP and FN for the
test cases used in the evaluation. Sophos successfully detects all
the attacks with zero FN, and all the benign counterparts with zero
FP. Table 4 shows the consolidated attack detection performance,
and the existing state of the art.

5.2.1 Filament-kinetic Attacks (FS, FD, FC). Figures 6 and 7 presents
Sophos performance in distinguishing similar looking benign de-
viations from geometry based attack. The total mismatched pixel
in Figure 6 (c) are around 25% more than in Figure 7 (c). However,
after passing through synchronization, contiguousness criteria, and
parameter thresholds, Sophos correctly distinguishes between an
attack and a small benign deviation. Figure 8 compares the actual
images and the sophos images for the filament-kinetic cavity (FC)
and filament-kinetic state (FS) attacks. For FS attack, there is no
visible change. However, for FC attack, the cavity is visible when
the attacked layer is being printed. Figure 8 (c) and (d) shows that
Sophos detected the deviation in both cases.

5.2.2 Dynamic-thermal Attacks (TN, TB). High and low tempera-
ture variations are conveniently detected at the first attacked layer.
The heatmaps in Figure 9 generated from Sophos results show
obvious deviations in the attacked samples temperature profile.

5.2.3 Infill Pattern and Density Attacks (IFP, IFD). Change of
infill pattern is invisible when the printing is completed. However,
this attack is fairly obvious for Sophos, and raises multiple alerts
on the first attacked layer. The affected parameters include the
layer geometry, filament distribution, timing profile, and G-code
commands.

(a) Image from G-code (b) Image from Sensors Data

(c) Preliminary Difference(d) Space algorithm Result

Biggest Diff = 2.12 mm2

Total mismatch = 6.2 mm2

Final verdict: FAIL

Figure 7: Kinetic attack detection

Figure 8: Filament-kinetic attack detection by Sophos
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Attack Sophos Performance Existing State of the Art
FS Detected, Min Duration ≥ 100ms; 1% Δ𝑒

per layer OR 5% Δ𝑒 per cmd
Not Detected

FD Detected, 1% Δ𝑒 per layer OR 5% Δ𝑒 per
cmd

Not Detected

FC 1% Δ𝑒 per layer OR 5% Δ𝑒 per cmd OR
1mm2 cavity size

Not Detected

TN Detected, attacks over 5𝑜C change Not Detected
TB Detected, attacks over 5𝑜C change Not Detected
IFP All pattern changes detected Detected [5]
IFD Detected; 1% infill density change Demonstrated ±10% change [15], Devi-

ation > 1sec [13]
Z1 Detected; Net deviation ≥ 0.05 mm 0.1 mm [17]; if over multiple layers [16]
ZM Detected; Net deviation ≥ 0.05mm 0.1 mm [17]; if over multiple layers [16]
OG Detected; 1mm2 area OR 2% total mis-

match OR 0.3 mm single axis change
Not addressed as a benchmark

DC Detected; ≥ 1x1 mm 4 mm over one axis [17]
PS Detected, if path deviation > 1 mm even

if Δt < 1 sec
Δt ⩾ 2.26 sec [17]

TP1 Detected, if distance > 1 mm 1 sec duration (translated to >10
mm) [13]

TP2 Detected; if distance > 1mm Not presented; we assume 1 sec (as
above)

TPM Detected, if cumulative time diff > 2sec
OR path deviation > 1 mm

Not presented; we assume 1 sec (as
above)

V Detected, as and if Δt > 2 sec OR path
deviation > 1 mm

Δv ≥ ±25mm/s [17], 0.8 sec [13]

Table 4: Sophos attack detection performance - viz-a-viz ex-
isting state of the art

5.2.4 Layer Thickness Attacks (Z1, ZM). Sophos performance is
tested over 2 different z-axis attacks. In first attack, a single layer’s
thickness is changed by 0.1 mm. The attack is immediately detected.
In the second attack, the layer thickness is modified by 0.04 mm for
3 layers. This attack is detected at the 2𝑛𝑑 attacked layer when the
net height difference crosses the set threshold value. If the attack
only continues for one layer, Sophos would miss it. In such case,
the net difference in height of the object would remain under the
detection threshold, and the effectiveness of such an attack may be
questioned.

5.2.5 Outer Geometry (OG). Unlike infill lines whose thickness
is around the nozzle’s diameter (0.4 mm for our case study), the
outer geometry has bigger features. For the test samples, the outer
geometry deviation of 0.3 mm over one axis is always detected.
From area’s perspective, 1mm2 contiguous area deviation is always
detectable by Sophos.

5.2.6 Cavity Attack through Modified Design (DC). Some low
profile attacks are found relatively easier to detect than expected.
Modifying a cavity by 1 mm x 1 mm is supposedly a minimal
change in design file, it actually causes changes in multiple G-code
commands, and is easily and always detected by Sophos.

5.2.7 Toolpath Attacks through G-code Commands (PS, TP1, TP2,
TPM) . These attacks manipulate G-code instructions to modify the
kinetic properties of the object. The attacks are conducted by insert-
ing / deleting / modifying existing G-code commands. The state of
the art for modified sequence detectable duration is 2.6 seconds [13].
We propose a low profile version of re-sequencing attack that com-
pletes in less than 1 second. To re-order the command sequence
without changing the geometry for a linear traversing printer, we
require a minimum of 3 commands creating a triangle. The dura-
tion of the targeted commands before and after re-sequencing is
around 0.9 seconds. The total time difference experienced between

the 2 sequences is less than 100 ms. The attack is picked on the
first modified command as shown in Figure 5. The original trace

Figure 9: Dynamic-thermal attacks trace
expected only y-axis movement, but the actual trace shows move
in both x and y axes. Sophos detects the attack within 150 ms of its
launch.

5.2.8 Printing Speed Attack (V). During this attack, correct se-
quence of command is followed at a different speed. After the
attack is initiated, the timing profile continuously deviates from
the desired profile. If the attack sustains for 2 seconds, it is always
detected by the timing profile check.

5.3 Process Visualization Information
Sophos precisely points out the location, time, and attack param-
eters in a 3D object. Recall that Figure 8 (c) and (d) identify the
missing infill lines during a filament-kinetic attack. Figure 5 high-
lights the G-code instruction at which the re-sequencing attack is
launched. For timing integrity attack, Sophos highlights the exact
time and the sample where the integrity violation starts. In addition
to attack visualization, Sophos helps in identifying unintended pa-
rameters settings errors that may cause the actual print to deviate
from the actual design.

5.4 Comparison with Existing Approaches
Table 4 compares Sophos results with the existing techniques [5, 13,
15–17] which also rely on independent monitoring through external
sensors. The detection thresholds of Sophos are much improved
from the existing techniques. Sophos also detects thermodynamic
and filament-kinetic attacks that are not covered by the existing
approaches.

In case of timing profile attacks where path is not changed,
Sophos reliably detects if the timing deviation is greater than 2
seconds. The reasons for the higher detection threshold for timing
integrity are the inaccuracies in the "source of truth" and the "G-
code transformation" modules. The estimated time mentioned by
the slicer software in the G-code file is not accurate, and can have
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up to 5% error. Some users of the same product have reported higher
errors. However, if an attacker tries to exploit the 2 seconds window
and attempts to change the geometry by 1 mm or higher, the attack
is immediately detected.

6 LIMITATIONS AND FUTUREWORK
In our implementation, we did not cover fan speed attack that in-
fluences thermodynamic properties. Existing work [5] does cover
this attack vector, and can be accommodated. Detecting 1 mm devi-
ation is a substantial improvement in the state of the art, but even
sub-mm changes can be damaging for the final object. Ideally, the
monitoring system’s resolution should be higher or matching the
monitored system’s resolution. With Sophos, this task is feasible by
merely upgrading the ’Data Acquisition’ module with better sensors.
Another improvement relates to the resilience of the 3D printing
process. If the system detects a small deviation, should the printing
be stopped? A minimal change can be harmless or damaging de-
pending upon multiple factors, such as the magnitude, the location
in the object, and the type of deviation. Real-time impact evaluation
of low profile attacks will help in taking a rationale-based decision
for aborting or continuing the printing job.

7 CONCLUSION
In this paper, we proposed Sophos, a fine-grained and modular
integrity checking framework for FDM. Sophos utilizes ubiquitous
and inexpensive sensors, and multi-domain analysis to detect in-
conspicuous attacks with much improved resolution than the state
of the art. Sophos successfully detects the filament-kinetic, and
thermodynamic attacks. Unlike many other approaches, Sophos
does not require any prior learning on a per-object basis, making
it suitable for Industry 4.0 for customized products instead of bulk
production. Sophos detects the attacks at the same layer where
they occur, thus saving precious time and printing resource. It also
provides detailed information about the process status and the
attacks.
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