
lable at ScienceDirect

Forensic Science International: Digital Investigation xxx (xxxx) xxx
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2021 USA - Proceedings of the Twenty First Annual DFRWS USA
JTAG-based PLC memory acquisition framework for industrial control
systems

Muhammad Haris Rais a, *, Rima Asmar Awad b, Juan Lopez Jr. b, Irfan Ahmed a

a Virginia Commonwealth University, Richmond, VA, 23284, USA
b Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
a r t i c l e i n f o

Article history:
Available online xxx

Keywords:
SCADA
PLC
ICS
Embedded devices
IoT forensics
Memory forensics
JTAG
Critical infrastructure protection
* Corresponding author.
E-mail address: raismh@vcu.edu (M.H. Rais).

https://doi.org/10.1016/j.fsidi.2021.301196
2666-2817/© 2021 The Authors. Published by Elsevier

Please cite this article as: M.H. Rais, R.A. Aw
Forensic Science International: Digital Inves
a b s t r a c t

In industrial control systems (ICS), programmable logic controllers (PLC) are the embedded devices that
directly control and monitor critical industrial infrastructure processes such as nuclear plants and power
grid stations. Cyberattacks often target PLCs to sabotage a physical process. A memory forensic analysis of
a suspect PLC can answer questions about an attack, including compromised firmware and manipulation
of PLC control logic code and I/O devices. Given physical access to a PLC, collecting forensic information
from the PLC memory at the hardware-level is risky and challenging. It may cause the PLC to crash or
hang since PLCs have proprietary, legacy hardware with heterogeneous architecture. This paper ad-
dresses this research problem and proposes a novel JTAG (Joint Test Action Group)-based framework,
Kyros, for reliable PLC memory acquisition. Kyros systematically creates a JTAG profile of a PLC through
hardware assessment, JTAG pins identification, memory map creation, and optimizing acquisition pa-
rameters. It also facilitates the community of interest (such as ICS owners, operators, and vendors) to
develop the JTAG profiles of PLCs. Further, we present a case study of Kyros implementation over Allen-
Bradley 1756-A10/B to help understand the framework's application on a real-world PLC used in industry
settings. The sample PLC memory dumps are shared with the research community to facilitate further
research.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Industrial control systems (ICS) are used to automate a broad
range of physical processes in critical infrastructure such as elec-
trical grid-stations, steel mills, water supply and treatment sys-
tems, oil and gas facilities, and nuclear power plants (Stouffer et al.,
2011; Ahmed et al., 2016). They have an essential component,
programmable logic controllers (PLC), which are embedded devices
directly connected to a physical process through input/output
components (such as sensors and actuators), and execute a control-
logic program to control the process (Ahmed et al., 2012).

PLCs are a common target of cyberattacks to sabotage a physical
process. The attacks over PLCs can have severe adverse effects, such
as shutting down of an electrical power grid, draining out of a city's
water supply arteries, or sabotaging a nuclear reactor facility
(Qasim et al., 2021; Yoo et al., 2019a, 2019b; Kush et al., 2011; Kalle
et al., 2019; Bhatia et al., 2018; Senthivel et al., 2018). As PLCs have
Ltd. This is an open access article u

ad, J. Lopez Jr. et al., JTAG-base
tigation, https://doi.org/10.10
volatile and non-volatile memory components, memory forensics
may help understand the attacks and ultimately contribute to the
improvement in security of the critical infrastructure (Ahmed et al.,
2017).

Current forensic efforts mostly focus on acquiring memory
contents remotely using PLC debugging tools (Wu and Nurse, 2015)
and ICS protocols such as GE-SRTP protocol (Denton et al., 2017),
Modicon M221 protocol (Yoo et al., 2019a; Control logic forensics f,
2020; Qasim et al., 2019; Ayub et al., 2021) and Allen-Bradley's
PCCC protocol (Senthivel et al., 2017). Given physical access to a PLC,
these approaches are less effective since they cannot acquire the
entire PLC memory and are limited to the memory contents within
a PLC's protocol address space. JTAG (Joint Test Access Group) ports
on a circuit board have been explored in the past to acquire PLC
memory at the hardware-level. However, in the literature, JTAG is
utilized mostly for modifying PLC firmware to demonstrate attacks
such as Harvey (Garcia et al., 2017), and device exploitation
(Firmware, 2013).

There is no forensics framework that provides guidelines for
reliable memory acquisition of a PLC using JTAG. This work is an
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

d PLC memory acquisition framework for industrial control systems,
16/j.fsidi.2021.301196

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:raismh@vcu.edu
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2021.301196
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2021.301196


Fig. 1. PLC architecture.

M.H. Rais, R.A. Awad, J. Lopez Jr. et al. Forensic Science International: Digital Investigation xxx (xxxx) xxx
effort to fill this void. Collecting forensic information from a PLC's
memory is a risky and challenging task and can cause a PLC to crash
or hang. PLCs are developed to live much longer than a traditional
IT system without updates or upgrades, and may contain legacy
hardware. PLC vendors use their proprietary hardware architec-
tures, firmware, and programming applications. The vendors typi-
cally do not share the implementation details. In some instances,
even the specifications of the integrated circuits (ICs) used in the
PLC circuit boards are not available. These factorsmake thememory
forensics of PLCs a challenging task.

This paper presents a novel JTAG (Joint Test Action Group)-based
forensics framework, Kyros for PLC memory acquisition. Kyros
supports a diverse set of PLC architectures by systematically
creating their JTAG profiles containing essential information for
JTAG setup and reliable memory acquisition. It also facilitates the
community of interest (mainly, ICS owners, operators, vendors, and
consultants) to contribute to developing the JTAG profiles of PLCs.

Specifically, Kyros consists of two phases: 1) Profile creation of
a suspect PLC and then 2) memory acquisition. Profile creation
starts with the circuit board's inspection to identify the JTAG pins
and their working status, followed by an extensive exercise of
memory-map creation to exclude unacquirable and redundant
address-space regions. For the heterogeneous memory elements
typically used in PLCs, Kyros discovers a set of optimized acqui-
sition parameters for each memory-map entry to finalize the
acquisition profile.

With the help of the acquired profile, Kyros recovers the
memory contents of a suspect PLC. The paper also presents a case
study of Kyros using Allen-Bradley's 1756-A10/B hosting 1756-L61
controller to understand the framework's application on a real-
world PLC used in industry settings. The process is documented
in detail, highlighting the caveats, challenges, and workarounds for
the reproducibility of the work.

The contributions of this work are as follows:

1. We propose a forensics framework, Kyros for reliable acquisi-
tion of PLCs' memory through JTAG interface.

2. Using Kyros, we present a case study over Allen-Bradley 1756-
L61 that not only outlines the process and the challenges, but
also share the final “acquisition profile” that can be readily used
by the community.

The rest of the paper is organized as follows. Section 2 covers the
background and related work. Section 3 describes the proposed
framework. Sections 4 explains the implementation case study for
the acquisition framework over Allen-Bradley 1756-L61, followed
by the limitations, the future work, and the conclusion.

2. Background and related work

2.1. Background

Critical infrastructure is defined by the Department of Home-
land (DHS) as 16 sectors that compose the assets, systems, and
networks (physical or virtual) vital to the United States (Critical
infrastructure sectors; Rais et al., 2021). Industrial Control Sys-
tems (ICS) and supervisory control and data acquisition (SCADA)
systems are the underpinning technologies ensuring proper oper-
ation of critical infrastructures. PLCs are a critical component of ICS.
PLC Architecture. Fig. 1 shows a simplified view of the PLC archi-
tecture (Ahmed et al., 2017). The IOmodules communicatewith the
physical process via sensors and actuators. Once the PLC starts, the
CPU loads & executes the firmware available in non-volatile
memory. The firmware fetches the control logic downloaded from
the control PC and runs it in an infinite loop. Depending upon the
2

latest sensor values and the control logic, the PLC updates the
output values sent to the actuator during each cycle. JTAG Over-
view. Joint Test Action Group (JTAG), commonly referred to as
boundary-scan and defined by the Institute of Electrical and Elec-
tronics Engineers (IEEE) 1149.1, was developed for validating
proper assembly of components on PCB boards in the 1990s
(Vishwakarma and Lee, 2018). In the ICS industry, most PLC man-
ufacturers use JTAG at the developing and testing stage to access
the internal subsystem of ICS or for breakdown examination,
updating and storing firmware on the chip, and debugging. Because
there are many JTAG debuggers available in the market that range
in cost from ten to a few hundred dollars, JTAG can provide a
“backdoor” that can be exploited by attackers and allow access to
the internals of a chip and firmware. For that reason, vendors
sometimes entirely remove the JTAG pins before putting the control
system in production, or hide JTAG interface points from users.

JTAG consists of a Test Access Port (TAP) controller, which is a
16-state machine that gives easy access to test functions built into a
component and can be programmed through five JTAG pins:

C Test Clock (TCK): Clock signal provides timing data to the
boundary scan system. Input data is read at the rising edge
from TMS and TDI pins, while data is output to TDO pin at the
falling edge.

C Test Mode Select (TMS): Signal received on TMS pin controls
the test logic's operational mode.

C Test Data Input (TDI): Connection onto which the test in-
structions data stream is passed.

C Test Data Output (TDO): Provides data from the boundary
scan registers, i.e., test data shifts out on this pin.

C Test Reset (TRST) (optional): Optional active low test reset
pin on the JTAG interface that permits asynchronous TAP
controller initialization without affecting other device or
system logic.

Although the JTAG port is mostly used for hardware fault
debugging, forensic investigators also use it to access the content of
Random Access Memory (RAM) following cyber-attacks or system
faults.

2.2. Related work

This section covers a body of literature for JTAG-based memory
acquisition on embedded devices for offensive and defensive



Fig. 2. JTAG-based memory acquisition framework for programmable logic controllers.

Fig. 3. JTAG contact pads identified in various PLCs.

M.H. Rais, R.A. Awad, J. Lopez Jr. et al. Forensic Science International: Digital Investigation xxx (xxxx) xxx
purposes. Most literature focuses either on PLC firmware attacks or
targets smartphones. The work closest to ours are Harvey (Garcia
et al., 2017) and Majeric et al. (Fabien et al., 2016). They use the
JTAG interface to acquire PLC's firmware for launching a firmware
modification attack. However, none of them discusses acquiring the
complete addressable memory of a PLC and proposing any forensics
framework. On the other hand, our proposed framework, Kyros,
focuses on discovering and acquiring the entire acquirable address
space in a PLC, explained through a detailed case study. JTAG-based
Cyber Defense. Breeuwsma (2006) describes a broad set of steps for
accessing the JTAG port and acquiring raw memory dumps of
embedded systems. The author also discusses some practical
challenges, but does not present any framework or a detailed case
study.

Konstantinou et al. (2018) implement PHYLAX, a JTAG based
online monitoring and detection mechanism that connects to a
JTAG enabled embedded device. PHYLAX is evaluated on a power
grid HITL testbed, where it attaches to the JTAG interface of the
embedded circuit board controller. PHYLAX consists of three parts:
1) A reader module to fetch device, process, and application-
specific parameters such as memory size, memory, or register ac-
cess rate; 2) an adaptive module that compares the immutable
section of the firmware to a baseline model to detect any modifi-
cation and check for suspicious executable instruction; and 3) a
detector module to check violations detected by the adaptive
module to generate alerts.

Guri et al. (2015) propose a framework, JoKER (JTAG observe
Kernel), for detecting stealthy rootkits in the Android OS kernel by
using the JTAG interface. The mobile device is halted using JTAG
commands, providing read, write, and other debugging function-
ality to the RAM and Flash memory. Raw memory is extracted from
3

selected regions for analysis by the scripts written by the authors.
The framework obtains a trusted snapshot of the device's memory
and effectively detects kernel rootkits.

Willsassen (Willassen, 2005) uses JTAG test pins to retrieve a
device's internal memory. This method is verified on the Nokia 5110
model. JTAG-based Cyber Attacks. Schuett et al. (Schuett et al.,
2014) perform firmware modification attacks on PLC using JTAG
interface. The authors first extract the firmware image and perform
static and dynamic analysis of the code. JTAG is used to perform
dynamic analysis to identify execution paths and generate memory
dumps. The firmware is repackaged with a malicious attack that
triggers a denial of service attack with a combination of CIP pro-
tocol commands by writing a sentinel value to an unused flash
memory area.

Basnight et al. (Firmware, 2013) use JTAG and PLC firmware
reverse-engineering to demonstrate the possibilities of firmware
modification attacks. They extract the firmware from an update
package. The firmware is then reverse engineered, and the valida-
tion algorithm is analyzed to uncover vulnerabilities that allow
firmware modification.

Harvey (Garcia et al., 2017) is a PLC rootkit at the firmware level
that can evade operators viewing the HMI. Using JTAG and firm-
ware disassembly, the authors managed to locate the subroutines
needed for their rootkit. Harvey manipulates input and output
values of the PLC without changing the PLC's control logic and
eventually causing damage to the physical system.

Majeric et al. (Fabien et al., 2016) perform a hardware/software
combined attack to get root privilege in Android. The authors
successfully demonstrate the privilege escalation attack by 1)
finding the system call address that manages the privilege alloca-
tion to processes and 2) modifying the system call and injecting the



Fig. 4. JTAG pins accessible on the processor with LFQP packaging design for PLC CompactLogix 1769

Fig. 5. Identifying JTAG pins on the contact pads through connectivity test.

Fig. 6. Confirming JTAG pinou

M.H. Rais, R.A. Awad, J. Lopez Jr. et al. Forensic Science International: Digital Investigation xxx (xxxx) xxx

4

fault at an identified location using the JTAG port to request root
permission from the previously identified system call.

3. JTAG-based memory acquisition framework

Fig. 2 presents the proposed framework, Kyros, consisting of
two distinct phases: 1) Creating a PLC profile for JTAG acquisition
and 2) acquiring a suspect PLC's memory if the PLC's profile is
available.

3.1. JTAG acquisition profile creation

PLCs are proprietary, legacy hardware with heterogeneous ar-
chitecture, which may cause a PLC to crash or hang during memory
acquisition using JTAG. Thus, we propose to create a JTAG profile of
a target PLC containing essential information for a reliable memory
acquisition, such as the location of JTAG ports on a PLC's circuit
t using JTAGulator device.



Table 1
List of equipment and software used in the case-study.

Ser Equipment/Software Description

1 PLC Allen-Bradley 1756 A10 with modules L61
ControlLogix 5561, HSC/A, IF8, 2x OB32/A,
DNB B, ENBT A

2 PLC Control PC core i7-8700, 16 GB RAM, Windows 10 for
PLC control software
PC connected to PLC over Ethernet

3 Project PC core i7-7800. 16 GB RAM, Windows 10
connected to JTAG debugger over USB

4 JTAG Interface
Finder

JTAGulator by Parallax Inc

5 JTAG Debugger Segger J-Link ARM V8.00
6 Power Supply Tekpower TP-3005D-3 Digital Variable

DC Power Supply (any 24 V DC 3 A
power supply will work)

7 SMT header
for PCB

2 � 7 pins unshrouded header, 2.54 mm pitch

8 IDC cable
for header

Digilent, JTAG 2 � 7 pin cable

9 Miscellaneous Breadboard, connecting cables, soldering
iron, soldering tips (for SMT), Multimeter,
Magnifying glass

10 PLC control
software

RSLogix 5000 version 20.05.00 (CPR 9 SR 10)
FactoryTalk Activation Manager v 4.05.01

11 JTAG Debugger
software

SEGGER -J-Link V6.80 d suite

12 Python library PyLink Python library by Square Inc.
for Segger Debugger

M.H. Rais, R.A. Awad, J. Lopez Jr. et al. Forensic Science International: Digital Investigation xxx (xxxx) xxx
board, identification of unacquirable memory blocks, and JTAG
parameter settings. The profile can be provided by the PLC vendors,
obtained through PLC datasheets and other vendor documents, or
created by obtaining and analyzing a sample PLC. Kyros focuses on
the latter, identified in Fig. 2a to help the community of interest
(mainly, ICS owners, operators, vendors, and consultants) to
contribute to developing the JTAG profiles of PLCs.

Kyros provides a procedure for setting up a PLC for memory
acquisition through JTAG, generates the memory map of the PLC,
and discovers the JTAG optimized parameters to create a JTAG
profile. Note that the process involves hardware interference and
trials that may result in a PLC crash. Thus, it should be carried out
on a test PLC of the same model as a suspect PLC.

PLC Hardware Assessment. The first step in profile creation is
PLC hardware assessment to attain the required information about
processor and memory elements in a PLC. Relevant information
about the processor includes the architecture, internal volatile and
non-volatile memory, and the processor's memory map. The pro-
cessor's internal memory (if a microcontroller is used) is not
enough, and the PLC circuit board usually hosts volatile and non-
volatile memory elements. As JTAG-based acquisition can be slow,
the memory elements set an expectation of total memory size. A
removable SD-card may also be available for storage containing
useful information related to the PLC programs and firmware
running. However, SD-card is not part of the internal memory and
can be acquired through an SD-card reader.

The hardware information search should start with the PLC
vendor's hardware manuals. Generally, the vendors do not provide
architectural information or the memory elements used in the PLC.
However, the data like microcontroller ID, code memory size, IO
data memory size, backup memory options, etc., do provide certain
clues that help in drawing the complete picture in due course. This
incomplete information can be augmented through a physical in-
spection of the circuit boards by disassembling the PLC. In the case
of a modular PLC, the focus should be on the controller module.

The circuit boards on a PLC can be categorized into three groups
as per their functionality: mainboard, communication board, and
power board. A quick search of the ICs present on the main and
communication boards helps identify the processor and the
memory chips. The data sheets can provide the specifications of
commercially available ICs. JTAG Pins Identification. This step
identifies the physical location of the JTAG port on the circuit board,
its operational status, and the JTAG pinout. If the processor pack-
aging style allows for access to the pins (e.g., quad flat package
design), the JTAG pins can be physically accessed on the processor.
Surface mount (SMD) test clips andmicro-grabber clips can be used
for this purpose. However, they have practical limitations, including
fragile connections that may pop out or may even short-circuit the
processor pins, and hindrance in the PLC's reassembly, without
which the acquisition process cannot continue. In some cases, the
processor IC packaging does not allow physical access to the pins
(such as ball grid array design).

JTAG Interface Pinout on Circuit-board. Most vendors remove the
header from the JTAG interface on a circuit-board, and only the
contact pad is visible. We observe the pads with 12e24 pins
organized in 2 rows in different PLCs. Fig. 3 shows the contact pads
identified in 4 different PLCs. If the processor pins are accessible
and datasheets available, the JTAG pins can be identified on the
processor (shown in Fig. 4). Through connectivity tests between the
processor-designated pins and the candidate contact-pad pins, the
JTAG-pinout can be confirmed. Fig. 5 shows an example of the
connectivity tests performed on PLC CompactLogix 1769.

For the processors with non-accessible pins, the connectivity
test is not possible. JTAG pins finder device, such as JTAGulator
(GrandJtagulator, 2013) can be used to find the JTAG pinout.
5

JTAGulator works by assigning different roles to the pins through
permutation to arrive at the correct pinout. Fig. 6 shows a typical
JTAGulator setup. The cable routed out of the PLC is connected to
random connecting pins on the JTAGulator through flexible inter-
facing via a breadboard. A clipped output of JTAGulator CLI shows
the pins used for various JTAG signals. Some vendors permanently
disable the JTAG port after the circuit testing (An12419, 2019). Thus,
the successful pinout identification by JTAGulator also confirms the
active status of the JTAG interface.

To use JTAGulator, the PLC has to be reassembled and powered
up. It is advisable to install a header by soldering on the contact pad
and route a cable out of the PLC before the reassembly. This one-
time hardware interference is a limitation of JTAG-based memory
acquisition. Memory Acquisition Setup. We can use any readily
available JTAG debugger devices supporting the processor's archi-
tecture to utilize the JTAG port. Fig. 7 illustrates a typical JTAG setup.
Debuggers can connect to a computer running a JTAG debugger
software suite through USB or over the network. If the processor
datasheets are not available, testing through multiple debuggers
may be required. Unfortunately, there are no standard interfaces for
the debugging devices and the PLC's JTAG port. Thus, Kyros rec-
ommends a flexible interfacing platform (using breadboard or pin
converter circuits) to switch between debuggers and PLCs for
testing conveniently. Device Memory Map Creation. The memory
acquisition through JTAG is a slow and risky process (Afonin and
Katalov, 2016). This step obtains a memory-map of address space
ranges for reliable and efficient acquisition by eliminating redun-
dant data and unacquirable address spaces.

Data Redundancy Elimination. A processor's address space is
often sparsely populated in PLCs. By identifying the unused bits,
redundant data acquisition can be (optionally) avoided reducing
the acquisition time. For instance, in our experience, a 32-bit pro-
cessor of a PLCmay be using less than 200million unique addresses
from the possible 4 Gig space. Multiple address combinations may
point to a single physical location. Due to slow acquisition speed, it
helps identify this type of duplication. However, care must be taken
to distinguish it with the same data at different unique memory



M.H. Rais, R.A. Awad, J. Lopez Jr. et al. Forensic Science International: Digital Investigation xxx (xxxx) xxx
addresses. One way of discrimination is to write on the memory
address via JTAG debugger on one location and see the impact on
the other location. We highlight both types of examples in the case
study.

Unacquirable Blocks Removal. The unacquirable addresses can
hang the PLC. They can be identified using mapping data from the
vendor. Otherwise, identifying unacquirable memory will involve
“crash and learn” exercise that should be conducted on a test-PLC.
Acquisition Parameters Optimization. As JTAG interaction is a low-
level process, and the PLC firmware is not designed to cater for JTAG
based memory acquisition, the use of arbitrary JTAG parameter
settings can timeout certain watchdog timers crashing the PLC, the
debugger or both. This step is performed to avoid such occurrences.
Parameters optimization is also useful for speeding up the memory
acquisition process. The memory ICs used on the circuit board have
different response-times, refresh rates, usage, and other specifica-
tions, warranting an optimization effort on a per chip or address
block basis. The optimization parameters include the speed of
acquisition, block size, buffer size, and wait-time between
consecutive read operations. These parameters should be syn-
chronized with the hardware acquisition tool (such as the JTAG
debugger module and the driver software).

IC datasheets indicate the maximum time available between
consecutive refresh operations. Using communication buffers ca-
pacity and the acquisition speed, we can obtain the maximum
memory block to read in one go. However, in the absence of the
documentation, it is not simple (and not directly sought-after in-
formation from a forensic perspective) to map each IC with the
address region. An alternate approach focuses on the populated
memory regions and tries a range of combinations of these pa-
rameters for the optimal result. However, this scheme may crash
the PLC and hang the debugger resulting in restarting the PLC and
debugger. Since the debugger typically runs on a desktop computer,
it can restart automatically via a shell script. However, power-
cycling the PLC is a challenging task and requires restarting the
power source unit. As the memory chips and their roles are limited
in number, manual PLC resets may also work. Profile Generation
and Verification. By this stage, we achieve a set of acquirable,
redundant, unacquirable, and unused memory addresses. Aligning
these address blocks with the corresponding optimization param-
eters results in a “JTAG Acquisition Profile” for the PLC. The first two
fields of the profile constitute the address block's starting and
ending address. The remaining fields pertain to optimization pa-
rameters, including the block-size, speed, and wait-time. “Block-
size” represents the data-size acquired by issuing a single read-
command through the debugger. “Speed” is the JTAG clock rate,
and the “Wait-time” is the idle time between two consecutive read-
commands issued.

3.2. PLC memory acquisition

Fig. 2b outlines Kyros for utilizing a JTAG acquisition profile of a
suspect PLC for reliable memory acquisition. Acquisition Setup for a
Suspect PLC. They can replicate the acquisition setup of a test-PLC
for a suspect PLC, involving header installation and cable routing
Table 2
Memory elements on Allen-Bradley ControlLogix 5561.

Ser Type Part No Vendor Qty Total Size

1 NOR Flash 28F640J3D75 Intel 01 8 MB
2 Static RAM CY7C1041CV33 Cypress 04 2 MB
3 SDRAM 48LC4M16A2 Micron 03 24 MB
4 NAND Flash K9F1G08U0A Samsung 01 128 MB
5 SD Card 1784-CF64 Allen- Bradley 01 64 MB

6

out of PLC. Parameters Setting and Memory Acquisition. Similarly,
investigators can use JTAG parameter settings in the profile for the
acquisition. Although the acquisition can be performed manually, it
can be automated using the debugger APIs. The simple process
involves parsing the profile-set and invoking the memory-read
calls. The attained memory can be saved in any format of choice.
As the acquired address blocks will be disjoint, the most straight-
forward format could save the acquiredmemory inmultiple files by
embedding the metadata in the filename. Verification of Acquired
Data. The acquired memory should be verified by using the in-
dicators of a valid memory dump. Some indicators include finding
the firmware obtained from the vendor's website, ASCII symbols
e.g., device catalog name, modules inventory, IP address, etc.

4. Case study: Allen-Bradley PLC 1756-A10 with ControlLogix
5561

Allen-Bradley's modular chassis 1756-A10 B is used as an
implementation case study of Kyros. The chassis can hold up to ten
modules, including controller, IO, communication, and counter
modules. The controller installed in the chassis is ControlLogix
5561 (catalog number 1756-L61 Series B), running the latest firm-
ware 20.019.

4.1. Case study goals

The case study achieves the following three goals: 1) Demon-
strates a practical example of Kyros; 2) presents the memory-
acquisition profile and a ready-to-use tool for acquiring the mem-
ory contents of Allen-Bradley ControlLogix 5561 controller; 3)
discusses and shares a dataset of acquired memory contents for
Allen-Bradley ControlLogix 5561 for a range of programs to facili-
tate research on PLC memory analysis.

4.2. Implementation setup

The PLC is connected over the Ethernet interface to a computer
running engineering (programming) software. This channel is used
to download projects to the test-PLC. Another computer is used to
read the PLC memory contents using the JTAG debugger software
suite. The computer is connected to the PLC via the JTAG interface.
Table 1 shows the list of equipment used.

4.3. JTAG profile creation

As the acquisition profile for the PLC does not exist, we go
through the profile creation phase using Kyros.

4.3.1. Hardware assessment
Architecture. Allen-Bradley 1756-A10 chassis used in our case-

study is populated with the modules mentioned in Table 1. We
disassembled the controller module (1756-L61). There are two
processors installed on the main circuit board. Atmel AT56J05-
UQ3T located adjacent to the socket connecting the controller
module to the chassis, is used for communication among the
modules. Centrally located Philips VY22575 is the main processor.
No official documentation is available about the Philips processor.
Upon inquiry from the vendor (then Philips, now NXP), the infor-
mation was regretted being “customer specific” product. The part
number shows that it is an ARM processor.

Memory Elements. Memory elements on the circuit board are
listed in Table 2 that includes nine ICs and one SD-card. Four Static
RAM ICs have a total capacity of 2 MB, matching the “Data and
Logic” memory size mentioned in the controller's properties in the
engineering software. SDRAM, NOR, and NAND Flash ICs are also



Fig. 7. JTAG-based memory acquisition setup.

M.H. Rais, R.A. Awad, J. Lopez Jr. et al. Forensic Science International: Digital Investigation xxx (xxxx) xxx
located onboard. Fig. 8 marks the processors, memory ICs, and the
JTAG contact-pad (confirmed in due course of study) on the main
circuit board.
4.3.2. JTAG pins identification
Though the likely JTAG candidate is a 2 � 7 pins contact-pad

available in vicinity of the processor, confirmation through con-
nectivity test is not possible due to processor's BGA packaging
design offering no access to the pins. Even if the pins were acces-
sible, manual search without the data sheets would be a laborious
and inefficient exercise. JTAG Interface Pinout. To confirm about the
operational status and the JTAG pinout, we utilized JTAGulator
device. To use JTAGulator, the PLC has to be powered up, and thus to
be reassembled. Header Installation and Cable Routing. Before
reassembly, we install a header on the candidate-contact pad. The
pitch and inter-row spacing of the contact-pad shown in Fig. 9a are
measured to be 2 mm and 5 mm, respectively. Headers with less
inter-row spacing can also be used. We install a surface-mount
breakaway header with 2 mm pitch and 2 mm inter-row spacing.
Fig. 9b shows the header soldered on the contact-pad using the
SMD soldering technique. A flat ribbon 2� 7 cable extends the JTAG
connectivity out of the PLC as visible in Fig. 9c. The soldering and
cable installation tasks are verified through a connectivity-test
between the contact-pad and the cable's remote-end. For routing
the cable out, PLC's porous metallic wall is slightly punctured, as
highlighted in Fig. 11.
Fig. 8. Allen-Bradley 1756-L61 Main board.

7

After extending the pins out, the JTAGulator setup is created
similar to Fig. 6 except for the PLC model. The JTAG pins are suc-
cessfully identified as shown in Fig. 10.

4.3.3. Memory acquisition setup
JTAG debugger devices are readily available for different pro-

cessor architectures and series. We use Segger's JLink debugger
device for this study. The debugger has prior JTAG related settings
for a wide range of processors. The physical setup is presented in
Fig. 11. The controller module of the PLC connects to the project PC
via the JTAG interface, and the EtherNet/IP module is connected to
the PLC Control-PC via Ethernet. Though the datasheet for our
target-processor is not available, the search for the vendor's com-
mercial products belonging to the same manufacturing era point
towards the LPC series to be a likely candidate for the processor
family. Using the LPC-2xxx series profile, the JLink debugger suc-
cessfully connected to the target processor.

4.3.4. Device Memory Map Creation and optimization
In the absence of a processor's datasheets, a memory-map has to

be created from scratch. To avoid missing out on valid data, we
resort to a complete address-space scan. The memory acquisition
through the JTAG debugger is a slow process. While trying to
retrieve information faster than a threshold value, undesirable in-
cidents like the hanging of PLC, disconnection from engineering
software, hanging of debugger, or incomplete data retrieval can
occur. These issues happen more frequently if the PLC is in “Run”
mode. We expected these events to address ranges allocated to
peripherals. Therefore, we resort to a slow acquisition exercise with
an offline PLC to acquire the complete address-range. After
reducing the data size for a single read command to 8192 bytes and
increasing the wait-time between two consecutive reads to 4 s, the
data is acquired successfully after a fewmanual skips and restarts at
non-acquirable addresses.

Redundant and unacquirable Address Blocks. The above exercise
took over twoweeks and revealed useful information, including the
following: there is no data in the upper half of the address-space;
some blocks are still unreadable; multiple copies of the same
data blocks are observed at different addresses. We identify two
possible reasons for multiple copies of the same data blocks: 1) the
data blocks may exist twice at different memory locations, and 2)
multiple addresses may point to the same memory location. An
example of the first case is the firmware, which is loaded from non-
volatile memory to the RAM on startup. From a forensics point of
view, both copies are independent and should be acquired. In the
second case, multiple addresses point to the same location as
illustrated in Fig. 12 through an example.



Fig. 9. Header and cable installation over contact-pad.

M.H. Rais, R.A. Awad, J. Lopez Jr. et al. Forensic Science International: Digital Investigation xxx (xxxx) xxx
When A31�27 address bits are set to “0000 0”, A26�24 are “Don't
Care” bits, while A23�0 points to unique memory location. It implies
Fig. 10. JTAG pins on the contact pad.

8

that acquiring 256MB for data for all address combinations of A26�0
provides eight copies of 16 MB data. Interestingly, the same data
reappears when A31�28 address bits are “0101” with four “‘Don't
care” bits from A27�24, while A23�0 pointing to the actual memory.
The “Don't Care” bits are address pins neither used to indicate a
specific device nor required for the device offset. After conducting a
manual analysis, we classified duplicate data cases. Address blocks
under case-1 must be kept, while case-2 (duplicate instances) is
optional and may be ignored to speed up the acquisition process.

Address ranges resulting in undesirable incidents mentioned in
the preceding paragraph are excluded from the acquirable memory
list. For example, data acquisition attempt from “0C080000” to
“0C081F0 F” immediately crashes the PLC. This learning is done on
the test-PLC to keep interference with the suspect PLC to a mini-
mum. The memory acquisition attempt on addresses not pointing to
any memory element does not return any data. We observe no data
for this PLC after address “68000000”. After removing the redun-
dant, unacquirable, and unused address-blocks, we formulate a list
of the address-ranges to be acquired. The first two columns of Fig. 13
presents a sample of the finalized acquirable address-blocks list.



Fig. 13. Sample of address ranges and the optimization parameters; default value for
zero.

Fig. 11. PLC experimental setup for the case study.

M.H. Rais, R.A. Awad, J. Lopez Jr. et al. Forensic Science International: Digital Investigation xxx (xxxx) xxx
4.3.5. Acquisition parameters optimization
Certain memory blocks allow slower data recovery than others,

and any attempt to speed up the process crashes the PLC, pre-
sumably, due to different specifications and IC refresh-rates. We
observe that more caution is required when the PLC is connected to
the engineering software and is in “Run” mode. We carried out the
exercise of finding optimal data block size and the wait-time be-
tween 2 consecutive read operations, suitable for all address-
ranges. Fig. 13 shows a sample output in a list data structure of
Python programming language hosting all acquirable address-
blocks and suitable acquisition parameters. “0” represents that
the default value of the parameter works well for that entry.
Another optimization parameter, named as “marker-based acqui-
sition”, is discussed under section 4.4.
4.3.6. Profile Generation and Verification
The consolidated knowledge acquired in the previous steps

constitutes the JTAG-Acquisition profile. The profile is verified
before using on the suspect PLC. Data Verification. The verification
process confirms the correctness of (1) the acquired data, (2) the
claimed redundant, unused, and unacquirable address blocks, and
(3) the optimization parameters.

The largest file in the memory is the firmware (2.7 MB). We
download the firmware from the vendor's website and match it
with all firmware instances of the firmware found in the dump. The
match is 100% for all the tests. Although these instances are not
acquired from independent memory blocks, they serve as separate
copies to verify the memory acquisition process. As a second veri-
fication test for the acquisition process's consistency, the strings
found in thememory dump (such as controller name, project name,
and filenames) are repeatedly acquired and matched and found to
be correct.

To confirm the redundant address spaces’ identification, one
byte is modified in one address-range, and the change is visible in
all the redundant blocks.

The optimization parameters are used to speed up the acquisi-
tion process. Less optimization will lead to more acquisition time,
but over-optimization results in PLC or debugger crashes and dis-
connections. During verification, we focus on ensuring that the
parameters are not over-optimized.
Fig. 12. Example of duplicate data due to Don't Care bits and multiple copies.

9

These tests are successfully repeated five times over five days,
after restarting the PLC and the debugger and downloading
different programs.

4.4. Memory acquisition of the suspect PLC

When the profile is created and verified, it is used for the
memory-acquisition of a suspect PLC. Acquisition Setup. Due to the
practical limitation of unavailability of the same model's PLC, we
put the test-PLC in a conveyor-belt test setup and re-used it as the
suspect PLC. Parameters Settings. After loading the profile, the
memory is acquired and verified. The memory dump is organized
in multiple files - one file for each address range. Acquisition
Modes. To facilitate the memory-acquisition, we write a python
program that uses Pylink library (Pylink) to interface with Segger's
JLink debugger. The program allows for three modes: complete
memory acquisition, customized range acquisition, and signature-
based acquisition. Signature-based or marker-based acquisition
mode is developed after observing the case study's PLC memory
structure. For instance, 2 MB memory block for “Data and Logic” is
populated from the start and the end with a precise pattern indi-
cating the start and end of each part. Marker-based acquisition (if
suits the requirement) can quickly provide the in-use “Data and
Logic” memory valid at the time of acquisition.

As one of the case-study goals is to generate the PLC memory
data sets, we use all the modes to acquire the memory contents.
Verification of Acquired Data. A reasonable level of confidence in
the acquisition setup is already attained after the detailed verifi-
cation in the profile creation phase. For the suspect PLC's data
verification, we search for the known strings (such as controller
catalog-name, filenames, etc.) and verify them in the memory-
dump. To test the process's repeatability, we randomly picked 20
addresses holding string-data across acquirable memory-ranges,
and repeatedly acquire those addresses five times. No anomaly is
observed, confirming the correct acquisition.

5. Limitations and future work

Utilization of Kyros requires the establishment of a small one-
time setup comprising of items mentioned in Table 1. A significant
limitation of Kyros is to require a test-PLC of the samemodel as the
suspect PLC for the creation of “JTAG Acquisition Profile”. However,



M.H. Rais, R.A. Awad, J. Lopez Jr. et al. Forensic Science International: Digital Investigation xxx (xxxx) xxx
as the community of interest involves supporting Kyros, more
profiles will be available, reducing the requirement for “Acquisition
Phase”. We intend to share the memory dumps and the profiles for
more PLCs of different vendors in the future.

6. Conclusion

This paper presented Kyros, the first memory acquisition
framework for PLC forensics using the JTAG interface. Dealing with
the practical challenge of proprietary architecture and customized
ICs with no access to the datasheets, Kyros can guide a forensic
investigator through the required tasks from the hardware setup to
the memory acquisition, highlighting the potential obstacles and
workarounds. The resultant profile comprises the memory-map of
the PLC, eliminating unused, redundant, and unacquirable address-
spaces. The acquisition parameters optimization process in the
framework compensates for the slow speed of JTAG-based acqui-
sition. The paper also presented a practical case-study of the
memory-acquisition of Allen-Bradley 1756-A10 hosting 1756-L61
controller. The memory acquisition tool and sample memory
dumps are shared publicly for further research by the community
interested in PLC memory-forensics.

Acknowledgement

This work was supported, in part, by the Virginia Common-
wealth Cyber Initiative, an investment in the advancement of cyber
R&D, innovation, and workforce development. For information,
visit www.cyberinitiative.org.

References

Afonin, O., Katalov, V., 2016. Mobile ForensicseAdvanced Investigative Strategies.
Packt Publishing Ltd.

Ahmed, I., Obermeier, S., Naedele, M., Richard III, G.G., 2012. SCADA systems:
challenges for forensic investigators. Computer 45 (12), 44e51.

Ahmed, I., Roussev, V., Johnson, W., Senthivel, S., Sudhakaran, S., 2016. A SCADA
system testbed for cybersecurity and forensic research and pedagogy. In: Pro-
ceedings of the 2nd Annual Industrial Control System Security Workshop
(ICSS).

Ahmed, I., Obermeier, S., Sudhakaran, S., Roussev, V., 2017. Programmable logic
controller forensics. IEEE Secur. Privacy 15 (6), 18e24.

An12419, 2019. Secure jtag for i.mxrt10xx. https://www.nxp.com/docs/en/
application-note/AN12419.pdf.

Ayub, A., Yoo, H., Ahmed, I., 2021. Empirical study of plc authentication protocols in
industrial control systems. In: 15th IEEE Workshop on Offensive Technologies
(WOOT). IEEE.

Bhatia, S., Behal, S., Ahmed, I., 2018. Distributed denial of service attacks and de-
fense mechanisms: current landscape and future directions. In: Versatile
Cybersecurity, vol. 72. Springer International Publishing, Cham.

Breeuwsma, M., 2006. Forensic imaging of embedded systems using jtag (bound-
ary-scan). Digit. Invest. 3 (1), 32e42.

CISA USA, Critical Infrastructure Sectors. (Accessed 15 Mar 2021).
Control logic forensics framework using built-in decompiler of engineering soft-

ware in industrial control systems. Forensic Sci. Int.: Digit. Invest. 33, 2020,
10
301013.
Denton, G., Karpisek, F., Breitinger, F., Baggili, I., 2017. Leveraging the srtp protocol

for over-the-network memory acquisition of a ge fanuc series 90-30. Digit.
Invest. 22, S26eS38.

Fabien, M., Bossuet, L., Gonzalvo, B., 2016. Jtag combined attack. In: 8th IFIP Inter-
national Conference on New Technologies, Mobility & Security (NTMS). IFIP.

Firmware, 2013. Modification attacks on programmable logic controllers. Int. J.
Critical Infrastruct. Protect. 6 (2), 76e84.

Garcia, L., Brasser, F., Cintuglu, M., Sadeghi, A.-R., Mohammed, O., Zonouz, S., 2017.
Hey, My Malware Knows Physics! Attacking Plcs with Physical Model Aware
Rootkit.

Grand, J., Jtagulator, 2013. https://github.com/grandideastudio/jtagulator.
Guri, M., Poliak, Y., Shapira, B., Elovici, Y., 2015. Joker: trusted detection of kernel

rootkits in android devices via jtag interface. In: 2015 IEEE Trustcom/BigDataSE/
ISPA, vol. 1. IEEE, pp. 65e73.

Kalle, S., Ameen, N., Yoo, H., Ahmed, I., 2019. CLIK on PLCs! Attacking control logic
with decompilation and virtual PLC. In: Proceeding of the 2019 NDSS Workshop
on Binary Analysis Research (BAR).

Konstantinou, C., Chielle, E., Maniatakos, M., 2018. Phylax: snapshot-based profiling
of real-time embedded devices via jtag interface. In: 2018 Design, Automation&
Test in Europe Conference & Exhibition (DATE). IEEE, pp. 869e872.

Kush, N.S., Foo, E., Ahmed, E., Ahmed, I., Clark, A., 2011. Gap analysis of intrusion
detection in smart grids. In: Valli, C. (Ed.), Proceedings of 2nd International
Cyber Resilience Conference. secau-Security Research Centre, Australia,
pp. 38e46.

Pylink library for Segger jlink debugger, by Square Inc.. (Accessed 15 Mar 2021).
Qasim, S.A., Lopez, J., Ahmed, I., 2019. Automated reconstruction of control logic for

programmable logic controller forensics. In: Information Security. Springer In-
ternational Publishing, Cham, pp. 402e422.

Qasim, S.A., Ayub, A., Johnson, J., Ahmed, I., 2021. Attacking the iec-61131 logic
engine in programmable logic controllers in industrial control systems. In:
Staggs, J., Shenoi, S. (Eds.), Critical Infrastructure Protection XV. Springer In-
ternational Publishing, Cham.

Rais, M.H., Li, Y., Ahmed, I., 2021. Spatiotemporal G-code modeling for secure FDM-
based 3D printing. In: Proceedings of the ACM/IEEE Twelfth International
Conference on Cyber-Physical Systems, ICCPS ’21. Association for Computing
Machinery, New York, NY, USA.

Schuett, C., Butts, J., Dunlap, S., 2014. An evaluation of modification attacks on
programmable logic controllers. Int. J. Critical Infrastruct. Protect. 7 (1), 61e68.

Senthivel, S., Ahmed, I., Roussev, V., 2017. SCADA network forensics of the PCCC
protocol. Digit. Invest. 22 (S), S57eS65.

Senthivel, S., Dhungana, S., Yoo, H., Ahmed, I., Roussev, V., 2018. Denial of engi-
neering operations attacks in industrial control systems. In: Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy, CODASPY
’18, ACM, New York, NY, USA, pp. 319e329.

Stouffer, K.A., Falco, J.A., Scarfone, K.A., 2011. Sp 800-82. Guide to Industrial Control
Systems (Ics) Security: Supervisory Control and Data Acquisition (Scada) Sys-
tems, Distributed Control Systems (Dcs), and Other Control System Configura-
tions Such as Programmable Logic Controllers (Plc). Tech. rep., Gaithersburg,
MD, USA.

Vishwakarma, G., Lee, W., 2018. Exploiting jtag and its mitigation in iot: a survey.
Future Internet 10 (12), 121.

Willassen, S., 2005. Forensic analysis of mobile phone internal memory. In: IFIP
International Conference on Digital Forensics. Springer, pp. 191e204.

Wu, T., Nurse, J.R., 2015. Exploring the use of plc debugging tools for digital forensic
investigations on scada systems. J. Digital Forensics, Secur. Law 10 (4), 7.

Yoo, H., Kalle, S., Smith, J., Ahmed, I., 2019a. Overshadow plc to detect remote
control-logic injection attacks. In: Perdisci, R., Maurice, C., Giacinto, G.,
Almgren, M. (Eds.), Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer International Publishing, Cham, pp. 109e132.

Yoo, H., Ahmed, I., 2019b. Control logic injection attacks on industrial control sys-
tems. In: Dhillon, G., Karlsson, F., Hedstr€om, K., Zúquete, A. (Eds.), ICT Systems
Security and Privacy Protection. Springer International Publishing, Cham,
pp. 33e48.

http://www.cyberinitiative.org
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref1
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref1
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref1
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref2
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref2
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref2
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref3
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref3
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref3
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref3
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref4
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref4
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref4
https://www.nxp.com/docs/en/application-note/AN12419.pdf
https://www.nxp.com/docs/en/application-note/AN12419.pdf
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref6
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref6
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref6
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref7
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref7
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref7
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref8
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref8
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref8
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref9
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref9
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref9
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref11
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref11
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref11
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref11
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref12
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref12
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref12
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref13
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref13
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref13
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref14
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref14
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref14
https://github.com/grandideastudio/jtagulator
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref16
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref16
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref16
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref16
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref17
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref17
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref17
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref18
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref18
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref18
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref18
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref18
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref19
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref19
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref19
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref19
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref19
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref21
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref21
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref21
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref21
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref22
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref22
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref22
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref22
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref23
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref23
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref23
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref23
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref24
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref24
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref24
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref25
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref25
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref25
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref26
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref26
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref26
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref26
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref26
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref27
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref27
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref27
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref27
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref27
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref28
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref28
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref29
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref29
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref29
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref30
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref30
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref31
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref31
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref31
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref31
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref31
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref32
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref32
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref32
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref32
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref32
http://refhub.elsevier.com/S2666-2817(21)00104-9/sref32

	JTAG-based PLC memory acquisition framework for industrial control systems
	1. Introduction
	2. Background and related work
	2.1. Background
	2.2. Related work

	3. JTAG-based memory acquisition framework
	3.1. JTAG acquisition profile creation
	3.2. PLC memory acquisition

	4. Case study: Allen-Bradley PLC 1756-A10 with ControlLogix 5561
	4.1. Case study goals
	4.2. Implementation setup
	4.3. JTAG profile creation
	4.3.1. Hardware assessment
	4.3.2. JTAG pins identification
	4.3.3. Memory acquisition setup
	4.3.4. Device Memory Map Creation and optimization
	4.3.5. Acquisition parameters optimization
	4.3.6. Profile Generation and Verification

	4.4. Memory acquisition of the suspect PLC

	5. Limitations and future work
	6. Conclusion
	Acknowledgement
	References


