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ARTICLE INFO ABSTRACT

Article history: In industrial control systems (ICS), attackers inject malicious control-logic into programmable logic
controllers (PLCs) to sabotage physical processes, such as nuclear plants, traffic-light signals, elevators,
and conveyor belts. For instance, Stuxnet operates by transfering control logic to Siemens S7-300 PLCs
over the network to manipulate the motor speed of centrifuges. These devestating attacks are referred to
as control-logic injection attacks. Their network traffic, if captured, contains malicious control logic that
can be leveraged as a forensic artifact. In this paper, we present Reditus to recover control logic from a
suspicious ICS network traffic. Reditus is based on the observation that an engineering software has a
built-in decompiler that can transform the control logic into its source-code. Reditus integrates the
decompiler with a (previously-captured) set of network traffic from a control-logic to recover the source
code of the binary control-logic automatically. We evaluate Reditus on the network traffic of 40 control
logic programs transferred from the SoMachine Basic engineering software to a Modicon M221 PLC. Our
evaluation successfully demonstrates that Reditus can recover the source-code of a control logic from its
network traffic.
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1. Introduction

Industrial control systems (ICS) monitor and control industrial
physical processes (e.g., nuclear plants, electrical power grids, and
gas pipelines (Ahmed et al., 2016)). ICS consists of a control center
and various field sites. The control center runs ICS services such as
the human—machine interface (HMI) and engineering workstation.
The field sites use programmable logic controllers (PLCs), sensors,
and actuators to control the physical processes.

PLCs are the main target of a cyber attack to sabotage a physical
process (Ahmed et al.,, 2012; Ahmed et al., 2017; Senthivel et al.,
2018; Garcia et al., 2017; Valentine and Farkas, 2011; Kush et al.,
2011). They run a control logic that defines how a physical pro-
cess should be controlled. Attackers target the control logic over the
network to manipulate the behavior of a physical process, referred
to as a control-logic injection attack (Yoo et al., 2019a; Kalle et al.,
2019; Govil et al., 2017; Yoo et al., 2019b). For instance, Stuxnet
infects the control logic of a Siemens S7-300 PLC to modify the
motor speed of centrifuges periodically from 1410 Hz to 2 Hz to
1064 Hz (Falliere et al., Chien; Chen and Abu-Nimeh, 2011). Stuxnet
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can compromise Siemens SIMATIC STEP 7 engineering software at
the control center and download malicious control logic to the PLC
at the field sites over the network. If the network traffic between
the control center and field sites is captured, the traffic will contain
the evidence of the transfer of the malicious control logic. Current
research lacks forensic techniques that can extract the control logic
from the network traffic dump and further transform it back to a
high-level source code for forensic analysis.

There are some existing partial solutions. Laddis is a state-of-the-
art forensic solution to recover a control logic from an ICS network
traffic dump (Senthivel et al., 2018). Mainly, Laddis is a binary control-
logic decompiler for the Allen—Bradley's RSLogix engineering soft-
ware and MicroLogix 1400 PLC(AllenBradlry, 1400). It uses acomplete
knowledge of the PCCC proprietary protocol to extract the control
logic from the network traffic and further utilize low-level under-
standing of binary control-logic semantics for decompilation. Unfor-
tunately, Laddis requires tedious and time-consuming manual
reverse engineering efforts for exploring the ICS proprietary network
protocols and semantics of binary control-logic.

Another state-of-the-art forensic solution is Similo, which ad-
dresses some of the short-comings of the Laddis system, including
manual reverse engineering (Qasim et al., 2019). Similo is designed
to investigate control-logic theft attacks where the attacker reads
the control logic from a PLC over the network. However, Similo does
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not support the forensic investigation of control logic injection
attacks where the attacker transfers a malicious control logic from
the engineering software to a target PLC.

To address the shortcomings of these systems, we propose
Reditus, a novel control-logic forensics framework for control logic
injection attacks. Reditus extracts and decompiles control logic
from a network traffic dump automatically without any manual
reverse engineering and without knowledge of ICS protocols and un-
derlying binary control-logic format. Reditus is based on the obser-
vation that an engineering software can read a control logic from a
PLC remotely referred to as the upload function, and has a built-in
decompiler that can further transform the control logic into its
source-code. Our core idea is to integrate the decompiler with a
(previously-captured) network traffic of a control-logic using the
upload function to recover the source code of the binary control-
logic automatically.

The Reditus framework has a virtual-PLC that engages the en-
gineering software using an ICS network traffic. When the engi-
neering software attempts to read a control logic chunk from a PLC,
the virtual-PLC receives a request-message, finds its control-logic
message from a traffic dump (currently being analyzed), and then
creates a response-message to send it back to the engineering
software. The Reditus framework is designed to handle several
challenges, including redirecting the attack messages of malicious
control logic (i.e., engineering software — target PLC) back to en-
gineering software, identifying correct control-logic messages in a
traffic dump, updating session-dependent dynamic fields (e.g,
transaction ID) in the response messages, and exchanging messages
for establishing and maintaining a session.

We evaluate Reditus on a popular Schneider Electric device, the
Modicon M221 PLC (Modicon, 1354), and SoMachine-Basic engi-
neering software (Modicon, 1474). Our dataset consists of the
network traffic dumps of 40 different control logic programs
downloaded to the PLC over the network. Notably, our evaluation
demonstrate that Reditus can accurately recover the source-code of
a control logic from a network dump.

1.1. Contributions
Our contributions can be summarized as follows:

e We present Reditus, a novel forensic framework to investigate
control-logic injection attacks.

e We evaluate Reditus on real-world PLCs and engineering soft-
ware actively used in modern industrial-settings.

o We release our datasets of the network traffic of 40 control logic
programs (Reditus-Framework-Git-Repository).

Engineering
HMI Workstation

1.2. Roadmap

We have organized the rest of the paper as follows: Section 2
provides the background. Section 3 presents the motivation and
challenges for facing state-of-the-art control-logic forensics tech-
niques. Section 4 presents the Reditus framework, followed by
implementation and evaluation results in sections 5 and 6. Section
7 covers related work, followed by the final takeaways in Section 8.

2. Background
2.1. ICS primer

Fig. 1 provides an overview of an industrial control system
environment for a gas pipeline scenario. This setup has a control
center and field sites.

2.1.1. Physical Process

In a gas pipeline scenario, the gas is compressed and transported
to a remote receiver through a pipeline. The physical process con-
sists of an air compressor, storage and receiver tanks, and solenoid
valves. The compressor compresses the air and stores it in a storage
tank that is connected with a receiving tank through a pipe. The
tanks are closed with solenoid valves. When the compressed air
needs to be transported to the receiving tank, the valves are opened
to let the air flow through the pipe.

2.1.2. Field site

The gas pipeline infrastructure is located at field sites and are
monitored and controlled via a pressure transmitter, solenoid
valves, and PLCs. The pressure transmitter is connected to the
receiving and storage tanks and also send data to their respective
PLCs. The PLCs are programmed with a control logic to achieve the
following two controls: first, they open the valves to let the air flow
through the pipe to transport the compressed air to the receiving
tank. Second, they monitor the pressure of the tanks and maintain a
desired level by releasing the air if the pressure is high.

2.1.3. Control center

The PLCs send data to the control center comprised of an HMI,
Historian and Engineering Workstation. The HMI displays the cur-
rent state of the gas pipeline process graphically. The Historian is a
database application to store the PLC data for analytics. The Engi-
neering Workstation runs an engineering software for the pro-
gramming, configuration, and maintenance of the PLCs remotely.
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Fig. 1. Industrial control system for a gas pipeline scenario.
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2.2. Engineering software and control logic

In practice, engineering software is used to write control logic
for PLCs. This proprietary programming software is offered by ICS
vendors to configure, program, and perform maintenance on their
PLCs. For instance, SoMachine Basic, RsLogix 500, and CX-
Programmer are used for the PLCs of Schneider Electric,
Allen—Bradley, and Omron respectively.

The IEC 61131-3 (IEC, 1131) standard defines five programming
languages for a PLC. Two languages are graphical i.e., ladder logic
(LL) and function block diagram (FBD), and three are textual pro-
gramming languages i.e., sequential function chart (SFC), struc-
tured text (ST) and instruction list (IL). Fig. 2 shows a code snippet
in both ladder-logic and instruction-list. Ladder-logic represents
instructions in graphical symbols. An instruction-list program
consists of a sequence of textual instructions, similar to assembly
language.

3. Problem statement and challenges
3.1. Problem statement

Given a network traffic dump of a malicious control logic
transferred over the network to a target PLC, our goal is to develop a
fully-automated forensic solution that can recover the binary con-
trol logic from the network dump and then, convert it into a
human-readable form for forensic analysis.

3.2. Challenges in control-logic forensics

Several challenges exist to achieve our stated goal of the control
logic forensics because of the proprietary control logic format and
ICS protocols.

¢ Binary control-logic does not have a standard open format (such
as Linux ELF) and has vendor-specific proprietary format.

¢ Engineering-software typically supports one or multiple lan-
guages defined by IEC 61131-3 standard. For instance, RsLogix
only supports ladder logic; SoMachine-Basic supports ladder
logic and instruction list. Binary control-logic must be trans-
formed into its respective high-level language.

e Proprietary ICS protocols are used to transfer a control-logic to a
PLC from an engineering software. Their specifications are not
publicly available. If an open protocol is used, it encapsulates a
proprietary layer. For instance, Modicon-M221 PLC and

0000 I LD %I0.0

0001 | [ SMWL := MWL + 1 ]

SoMachine-Basic use Modbus open-protocol. However, its data
field further contains proprietary fields such as the control-logic
address in PLC memory, function code, and control logic
content.

4. Reditus - a control-logic forensics framework
4.1. Overview

We propose Reditus, a forensics framework to investigate
control-logic injection attacks. Reditus consists of a virtual-PLC that
can communicate with the engineering software and use its upload
functionality to recover the high-level control logic from the
network traffic. It is a fully automatic approach and does not require
any knowledge of ICS protocols or the underlying binary control
logic format.

4.1.1. Communication with engineering software

Engineering software is equipped with both upload and down-
load functions. The download function transfers a control-logic to a
PLC. The upload function retrieves a binary control-logic from a PLC
and further transforms it to source-code in its respective IEC
language.

In both operations, the engineering software communicates
with the PLC over a series of request-response messages. Critical to
Reditus we observe that starting from the very first message used
for establishing the session, the communication is deterministic.

4.1.2. Binary Chunks

To transfer the control logic over the network, the engineering
software divides the binary control logic into a number of chunks. The
maximum size of one chunk can be 236 bytes. During the download
operation, the engineering software always starts writing from the
same memory address (i.e “0080”), whereas during upload the soft-
ware always starts reading from address “d4fe”. Moreover, for both
download and upload, the number of bytes read or written for each
memory address are also same. Fig. 4 shows the comparison of the
download and upload request messages from the engineering soft-
ware to the PLC. In the download request message, the engineering
software writes 43 bytes of control logic on address c404 in the PLC
memory. In the corresponding upload request, the engineering soft-
ware uses the same address and number of bytes (i.e the binary
chunk). Due to this behaviour of engineering software, Reditus can
use the downloaded network capture to recover the control logic
without needing any binary or decompilation information.

%MW1 = %MW1 + 1

| 00 Rungl UMW 3= MWL +1
——————————— —1 [ ]
______________ e = B S ST i i o, s soell aoe i
0000 | BLK  &TMO 1 7
i
0001 | LD  %I0.0 1 m ¢ Rung2
1 =10.0 IN Q X
0002 I IN |_| |— %TMO {
1 . Type: TON
0003 | 00T BLK 1 ;3: lmji.:;
= reset:
|
0004 | > Q |
ooosl[%ml = 8MW1 + 1 ] : ————————————————————————————
0006 | END_BLK :
Instruction List 1 Ladder Logic

Fig. 2. A code snippet in both instruction list (textual language) and ladder logic (graphical language).
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4.1.3. Virtual PLC

Based on the heuristics and observations aforementioned, we
developed Reditus as a virtual PLC framework that can take the
network traffic captured during the upload or download operation
and use it to transfer the control logic within the traffic. To that end,
Reditus must learn two relevant pieces of information: first, the
locations of all session-dependent, variable fields present in the
messages. Second, Reditus must learn the mapping between the
download and upload messages to generate a proper response to
the upload request using download traffic. With this information,
Reditus can communicate with the engineering software using
previously captured network traffic after editing the messages ac-
cording to the new session and request message type (download or
upload). In order to achieve this, Reditus goes through a learning
phase where it performs differential analysis (Garfinkel et al., 2012)
on varying benign network captures. After the learning phase, a
forensic analyst can employ Reditus to communicate with the en-
gineering software and perform in-depth forensic analysis on the
captured network traffic.

4.2. Learning phase

In the learning phase, Reditus ingests multiple sets of benign
network captures in the form of PCAP files to gather the session-
dependent fields and upload template using differential analysis.
The learning phase consists of two parts. In the first part, Reditus
extracts information about the location of session-dependent fields
present in the messages. Next, Reditus automatically learns the
different types of fields in the upload response message from the
PLC and their mapping with the similar fields in download request
message. This allows the framework to make a template for the
upload messages. The learning is done using only benign PCAP files
to make sure that Reditus learns the correct message format. Fig. 3
shows a graphical overview of Reditus.

4.2.1. Session dependant fields

As shown in Fig. 3, the first learning phase in Reditus discovers
the session-dependent fields in the messages. We leverage a
heuristic-based approach to compare the two benign PCAP files
containing the same control logic in the same transfer direction.
Since we are using the same control logic in both PCAP files, if we
compare the same message from two PCAP files, the majority of the
message will be the same and only the session-dependent fields
like session ID will differ. Fig. 6 shows the same message present in
two PCAP files from different sessions. Clearly, most of the two
messages remains the same and only the Transaction ID differs. As
shown in Fig. 3, the learning of session-dependent fields consists of
Pairing, Grouping and Differential Analysis, and Rule Extraction.

4.2.1.1. Pairing. Reditus first takes multiple sets of two benign PCAP
files from different sessions that have the same control logic and
transfer direction (both upload or download). Then for each request
message K1 in the first PCAP, it finds the similar request message K2
in the second PCAP. To identify the similar message, we use two
parameters, the size of the message and the similarity of two
messages strings. Reditus then compares all the request messages
in PCAP1 with all the request messages in PCAP2, and for each
message the framework automatically finds the most similar
message in the second PCAP. After identifying the most similar
message, it pairs them together (K1,K2) for further analysis.

4.2.1.2. Grouping and analysis. After acquiring the message pairs,
Reditus performs differential analysis on each pair, comparing the
two key messages character by character and for each pair it notes
the indices where the messages differ. These indices indicate the

location of session-dependent fields. It is important to note that
messages between the PLC and the engineering software can be of
multiple lengths and the location of session-dependent fields may
also vary. Therefore, Reditus forms groups based on the length of
messages present in each pair to ensures that all messages present
in one group share the same message format. This process is done
for all different sets of PCAP files.

4.2.1.3. Rule extraction. After performing differential analysis on
multiple sets of PCAP files and grouping the possible session-
dependent fields, the final step of the first learning phase exam-
ines each group to identify noise or any false positives. We assume
that for each message group, the location or index of session-
dependent field is consistent, so at this state Reditus takes only
those possible session-dependent fields that are consistent in the
majority of the messages and discards all other fields that are
inconsistent. This process is also repeated for all the PCAP sets and
the results are again combined in an identical manner to get one set
of session-dependent fields for each message group. Though this
step removes the noise, two problems remain: first, there is no
definitive boundry between the fields, i.e if two fields in the pro-
tocol are adjacent they will be considered as one. Second, if any
session-dependent field is not completely different in two PCAP
files Reditus will not be able to extract the complete session-
dependent field. For example in the message shown in Fig. 6, the
Transaction ID is of two bytes i.e from index O to 3. Since “3” at
index 0 is common in both messages, the differential analysis will
identify incomplete field consisting of three characters i.e. from
index 1 to 3.

Since protocol reverse engineering is not the objective of Redi-
tus, we can ignore the first problem as we are only interested in
identifying and updating the session-dependent fields so we can
reuse the previously captured network traffic. Even if two session-
dependent fields appear as one, Reditus will update this combined
session-dependent field in the response message while commu-
nicating with the engineering software. Reditus addresses the
second problem in the testing phase by doing a comparison of a
newly received request and similar request in the database. It is
possible that the test phase comparison may produce some false
positives, so Reditus combines the result of this comparison with
information gathered in the learning phase to produce the final
session-dependent fields. Reditus then takes the session-
dependent fields learned previously as a baseline and only selects
the fields from the testing phase that are adjacent to, overlapping,
or confined in any of the baseline fields, ignoring the rest.

4.2.2. Upload template

If the network stream under investigation was captured during
uploading a program from the PLC to the engineering software,
then Reditus can easily upload the control logic present in the PCAP
file to the engineering software by only modifying the session-
dependent fields present in the message. However, if the network
traffic contains download traffic, then in order to respond to the
upload request message, Reditus must generate a response from
scratch, since the format of upload response is different from
download as shown in Fig. 5. To generate the upload template,
Reditus again uses a heuristic-based approach. By examining the
upload responses messages from a real PLC to the engineering
software, we observed four types of fields present in the upload
response, which are also shown in Fig. 7.

1. Session-Dependent Fields: Vary over different sessions (e.g.
Transaction ID). The value of these fields does not depend on the
content of the message.
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Fig. 3. Overview of Reditus.
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2. Static Fields: Remain constant over all the upload response
messages such as the Modbus function code or success function
code.

3. Dynamic Fields: Depend on the content of the message and vary
in different messages (e.g. length of the message which depends
on the size of the control logic being transfered)

4. Control Logic: Control logic part of the message. Its size may
vary in different messages, but according to our observation, it
always comes after the aforementioned fields.

Since Reditus has already identified the session-dependent
fields in the first part of learning, in the second part, the
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Fig. 5. Comparison of download request and upload response for the same address.

framework tries to find the remaining three fields to make the
upload template. To accomplish this, Reditus takes sets of two
benign PCAP files that contain the same control logic but have a
different transfer direction, i.e one upload and the other download.
These files only contain the request-response messages containing
the control logic. Similar to previous learning, the first step is
pairing, followed by identifying the dynamic, control logic, and
static fields. Finally, Reditus combines this knowledge to form the
upload template.
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4.2.2.1. Pairing. In the first step, Reditus pairs the request and
response message present in the upload traffic with the corre-
sponding message in the download. But unlike the first phase, the
length and format of the upload and download request message is
different as shown in Fig. 4. In the download request message, the
engineering software sends a chunk of control logic to the PLC
along with its size and memory address where the PLC should write
the logic. Notably, the upload request is much shorter and the en-
gineering software only asks the PLC to send the control logic chunk
present on the address provided in the message. To pair the mes-
sages reading and writing on the same physical address, we assume
that the control logic will be in the later part of the download
request. To pair similar messages, we use the similarity of the up-
load request and download request equal to the length of upload
request. Reditus then calculates the similarity of an upload request
message with all of the request messages in the download PCAP
file, forming a four element tuple of upload and download requests
and responses where the similarity is highest among the messages.

4.2.2.2. Dynamic fields. The length of the message is a very com-
mon field in almost every protocol, so in order to generate the

upload template, Reditus needs to find the location of length field in
the message. In developing Reditus, we assumed that the size of the
length field is two bytes because it is the average size of the length
field in ICS protocols. To find the exact location of length field for
each upload request message, Reditus slides a window of two bytes,
i.e 4 characters, calculates the length of message after the window,
and compares it with the value inside the sliding window. If the
length of remaining message to the left of window is equal to the
value inside the window, then the indices of the window become a
potential length field. Unfortunately, this process can produce false
positives as its possible that by chance the value with the window
matches the length of the remaining message. For example, if the
value inside the window is 00 01 and there is only one byte after the
window, it will be considered the length field, as shown at the end
of the messages in the Fig. 6. To remove these false positives,
Reditus calculates the possible length fields in all the message
tuples and only then selects the fields that are present in all the
messages tuples. In this way, all false positives are eliminated and
Reditus can acquire the exact location of length field in the
message.

4.2.2.3. Static fields. Another important component of upload
messages are the static fields, the part of message that remains
same in all the upload response messages (e.g modbus function
code). To identify the static fields, Reditus compares all the upload
response messages with each other and identifies the indices
where the all the message have the same value.

4.2.2.4. Identifying control logic. The control logic is the most
important field for generating the upload template. As mentioned
in section 4.1, the engineering software always divides the control
logic into the same chunks for both download and upload. We as-
sume then that similar messages in upload and download stream
will have the same control logic piece present in them. The chal-
lenge then is identifying the location of control logic in the upload
response and download request so that it can be used to make the
upload template. For this purpose, we used a heuristic-based
approach based on the longest common sub-sequence (LCS) pre-
sent in the download request and upload response. For each mes-
sage tuple, Reditus computes the LCS between the download
request and upload response and notes the starting and ending
index in both the messages. It is possible that in some messages the
control logic part is smaller than the message header, so in that
case, Reditus will learn an incorrect location for the control logic. To
resolve this issue, after finding the location of the LCS in all
download request and upload response message pairs, Reditus
finds the starting and ending LCS indices that are common in most
of the message pairs and uses it for the final template.

4.2.2.5. Generating template. With the control logic in hand, Redi-
tus combines all fields together to generate the final template. It
first forms a string where it takes an upload response message from
the upload PCAP files and normalizes it by replacing all the values
except the static fields with X as shown in Fig. 7. This serves as a
basic upload template. During the testing phase, Reditus uses this
template and then updates it according to the session-dependent,
dynamic, and control logic fields to generate the final response
message.

4.3. Testing phase

In the testing phase, Reditus runs a virtual PLC and takes the
network capture under investigation in the form of PCAP file. First,
it generates a database of request and response messages present in
the PCAP. Then it starts a PLC server on the same port as the real
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PLC, i.e 502 in the case of the Modicon M221, and waits for request
messages from the engineering workstation. Once Reditus is
running, the control engineer can connect with it using the engi-
neering software and the IP address of the computer running
Reditus. Once the PLC server receives any request messages from
the engineering software, it forwards them to the Response
Generator, which make the response message using the messages
present in database, upload template, and session-dependent fields
and gives the message to the PLC server that sends the response to
the engineering software.

4.3.1. Response generator

The most important component of our virtual PLC finds the most
similar request message in the database for all the new request
messages from the engineering software and updates the response
according to the new session. In order to do this, the virtual PLC
uses the same similarity-based approach used for pairing the
messages in section 4.2.2 and finds the request message from the
database that has the maximum similarity with the new request.
After correctly identifying the request message similar to the new
request, the next step is to modify the corresponding response
message according the new session. If the network traffic under
investigation contains the control logic upload, Reditus only needs
to update the session-dependent fields. For download traffic, it
extracts the control logic portion using the information learned in
section 4.2.2 and puts it in the upload template generated earlier.
Finally, Reditus updates the session-dependent fields and dynamic
fields such as length in this newly crafted response message and
forwards the message to the PLC server which sends the response
message to the engineering software. We assume that the upload or
download direction information is provided to Reditus by the user.

5. Implementation

Reditus is developed in Python. It takes the network captures in
the form of PCAP files sas input. Based on the IP address, Reditus
filters the request and response message and stores the transport
layer payload of the request message and response message as a
key and value for a dictionary. The payload is stored as a hex-
idecimal string. We used Scapy (Scapy. [link].L https) for creating,
filtering, and modifying network packets. The PLC server is
implemented using a server socket on port 502 (the same port used
by the real Modicon M221 PLC). To measure the similarity of two
messages, we used the ratio() function of the SequenceMatcher
class from Python's difflib library (diflib. [link].L https). For any two
given messages, difflib provides a similarity ratio between [0,1].1 if
the two messages are identical and 0 if there is no similarity. To find
the longest common sub-sequence (LCS), we wrote a program us-
ing dynamic programming. The program takes the two strings and
returns a string representing the LCS.

6. Evaluation
6.1. Experimental setting

6.1.1. Lab setup

We evaluated Reditus on a Schneider Electric Modicon M221
PLC and SoMachine Basic V1.6 SP2. The engineering software was
installed on a Windows 7 virtual machine and Reditus was running
on an Ubuntu 18.04.3 LTS machine. All three devices were con-
nected and on the same network subnet.

6.1.2. Dataset
The dataset used for the evaluation consisted of 40 control logic
programs of varying complexity and sizes, both in terms of the

number of rungs and the number of instructions. Table 1 shows the
summary of our dataset.

6.1.3. Experiment methodology

A typical experiment replicates a control-logic injection attack
by downloading a control logic file to the Modicon M221 PLC and
capturing the Modbus network traffic in the form of PCAP file. This
file is then provided to Reditus, and then a connection is established
from the engineering software to Reditus and the upload function
of the engineering software is used to acquire the high-level control
logic present in the PCAP file. Finally, the control logic uploaded by
Reditus is manually compared with the original control logic file to
find the transfer accuracy of Reditus.

6.2. Functional-level accuracy

In this section, we will evaluate the functionality of Reditus. The
two most important requirements of Reditus are: 1) Reditus should
be able to match the download request messages from one PCAP
with the corresponding upload request message in the other PCAP
file, and 2) Reditus should be able to generate a upload to generate
the upload response message using download network traffic.

6.2.1. Matching accuracy

When Reditus receives any upload request message, it needs to
find the matching download request from the database, edit the
corresponding response message, and send the response to the
engineering software. If the response message is different from
what the engineering software was expecting, the engineering
software will terminate the communication with an error. As
shown in Fig. 4, the upload and download request messages have
different formats, so finding the exact match is non-trivial. In our
experiments, we found that the similarity and length based
matching approach used by Reditus for matching the upload
request message with the download request message present in the
database works with 100% accuracy across our entire dataset for a
real PLC.

Table 2 summarizes the database look-ups during our experi-
ments. While uploading the 40 control logic files, Reditus received
1929 read request (upload) messages from the engineering soft-
ware and was able successfully find all corresponding write request
(download) messages. For evaluation purpose, we compared the
address, address type, and control logic size field of the two
messages.

6.2.2. Upload template accuracy

The second most important function of Reditus is to learn the
upload response template from the sample PCAP files and use it to
generate upload response messages from the target PCAP file. To
evaluate the accuracy of upload template, we manually compared
the template with the upload response message from a real PLC to
check if 1) our template contains all four types of fields (Session-
Dependent, Static, Dynamic and Control Logic) and 2) if the location

Table 1

Summary of our Dataset for M221 PLC.
File # of Files Rungs Instructions
Size (kb) Min Max Avg Total Min Max Avg Total
60—80 24 1 5 275 66 2 23 10.75 258
81-90 5 2 5 38 19 8 16 102 51
91-100 4 5 16 9 36 19 112 50 200
101-120 4 8 14 10 40 20 72 365 146
120+ 3 12 26 173 52 36 118 77.66 233
Total 40 — — - 213 - - - 888
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Table 2
Summary of database look ups.
File Size (kb) # of Files # Read # Successful lookups Match
Messages Accuracy
Received %
60-80 24 1105 1105 100%
81-90 5 265 265 100%
91-100 4 192 192 100%
101-120 4 198 198 100%
120+ 3 169 169 100%
Total 40 1929 1929 —

in the upload template for each field is exactly the same as in the
upload response message from the real PLC. During our experi-
ments we found that Reditus was again able to generate the correct
upload template with 100% accuracy across the entire dataset. Fig. 7
and Table 3 show that the upload template generated by Reditus
has all the required fields and locations/indices as a response
message from the real PLC.

6.3. Packet-level accuracy

The main assumption in the development of Reditus is that
during upload and download, the engineering software reads and
writes control logic on the PLC, and if Reditus only has download
network traffic it can find all the control logic that was written on
the PLC and can send it to the engineering software using an upload
template. Specifically, for every read message from the engineering
software, there is a write message in the target PCAP. Table 4 shows
the summary of control logic read and write messages during our
experiments. While transferring 40 different control logic files,
Reditus received 1852 unique read messages out of which 1812
were present in the database. Upon examining the missing mes-
sages, we found that every download PCAP file was missing the
same message, related to the functional-level. Although our
assumption was not 100% accurate, only one of more than 1800
messages was missing. This problem can be resolved by keeping a
separate database of missing messages and connecting it with
Reditus. If the target PCAP (download) file does not have any
message, Reditus can look for the missing message in the second
database.
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6.4. Transfer accuracy

The most important metric to evaluate Reditus is the integrity of
the control logic transferred by Reditus. If Reditus introduces any
change in the control logic during the upload process it cannot be
used as a forensic tool. In order to find the transfer accuracy, we
uploaded 40 different control logic programs of various complex-
ities and sizes using Reditus and then manually compared each of
them with the original control logic program. We not only
compared the number of rungs and instructions but also made sure
that each rung and instruction is the same in both versions. Table 5
highlights the summary of control logic programs uploaded by
Reditus. Notably, Reditus successfully uploaded 40 control logic
programs containing 213 rungs and 888 instructions with 100%
transfer accuracy.

7. Related work

There are few tools available that can perform forensic analysis
and acquire the high-level representation of control logic from ICS
network traffic. Senthival et al. (Senthivel et al., 2017) introduced a
tool named “cutter” that can parse the network traffic of PCCC
protocol and extract forensic artifacts such as SMTP client config-
uration, control logic binary, and other system configuration files.
Cutter is limited to extracting different types of PCCC files and is not
able to convert the control logic binary to high-level representation.
To address this limitation, the authors took another manual reverse
engineering approach to develop Laddis (Senthivel et al., 2018).
Laddis can decompile the low-level binary of ladder logic to a
higher-level representation. Although Laddis can decompile the
ladder logic program from the network traffic on both directions i.e
upload and download, it only works for the PCCC protocol and
Allen—Bradley RSLogix 500 engineering software.

Kalle et al. (Kalle et al., 2019) developed Eupheus, a decompiler
that can transform the low-level control logic in the form of ma-
chine code of an RX630 to instruction list program. It was evaluated
on SoMachine Basic and Modicon M221 PLC. The authors also
presented a virtual PLC that can communicate with the engineering
software. Using Eupheus and a virtual PLC, the authors performed a
remote control logic injection attack on the Modicon M221 PLC.
Similar to Laddis, Eupheus and the virtual PLC are based on manual

Table 3
Comparison of the location of different fields in an actual PLC response and a template generated by Reditus.
Field type Indices in upload response from PLC Indices identified by Reditus in template Template
Accuracy
Session dependant 0,1,2,3 0,1,2,3 100%
Static 4,5,6,7,12,13,14,15 4,5,6,7,12,13,14,15 100%
,16,17,18,19 ,16,17,18,19
Dynamic 8,9,10,11 8,9,10,11 100%
Control 20-end of message 20-end of message 100%
Logic
Table 4
Summary of control logic read and write messages during the experiments.
File # of Files Unique Unique Messages missing Message missing
Size (kb) Read Write in Download per file
Message in Upload Message in Download
60—80 24 1060 1036 24 1
81-90 5 255 250 5 1
91-100 4 184 180 4 1
101-120 4 191 187 4 1
120+ 3 162 159 3 1
Total 40 1852 1812 40 —
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Table 5

Comparison of control logic uploaded by Reditus and the original M221 PLC.
File # of Files M221 PLC Reditus Upload
Size (kb) Rungs Instructions Rungs Instructions Accuracy
60-80 24 66 258 66 258 100%
81-90 5 19 51 19 51 100%
91-100 4 36 200 36 200 100%
101-120 4 40 146 40 146 100%
120+ 3 52 233 52 233 100%
Total 40 213 888 213 888 —

reverse engineering and cannot be used for any other ICS protocol
or PLC. Though SoMachine Basic and Modicon M221 provide both
the Ladder Logic and Instruction List options to represent the
control logic, Eupheus can only convert the low-level binary to an
instruction list program and will require additional effort to show
the Ladder Logic representation.

Qasim et al. (Qasim et al., 2019) developed Similo to recover
control logic from the ICS network traffic. Similar to Reditus, Similo
can learn the protocol fields automatically from the network traffic.
However, it only works if the control logic is being uploaded in the
network capture which limit its use for the forensic investigation of
control logic injection attacks such as Stuxnet, where the attackers
only download the control logic to the PLC.

8. Conclusion

In this paper we have presented Reditus, a new forensic
framework for forensic analysis of control logic injection attacks.
Reditus can recover the control logic from then network dump by
integrating the decompiler in the engineering software with the
virtual PLC. Reditus is fully automatic, and does not require any
explicit knowledge of the ICS protocol or underlying binary format.
We evaluated Reditus on a Modicon M221 PLC and SoMachine
Basic engineering software and successfully recovered 40 control
logic programs from network traffic captures.
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