Automated Reconstruction of Control Logic for
Programmable Logic Controller Forensics

Syed Ali Qasim!, Juan Lopez Jr?, Irfan Ahmed®

! Virginia Commonwealth University, Richmond VA 23284, USA
{qasimsa, iahmed3}@vcu.edu
2 Qak Ridge National Lab Oak Ridge, TN 37830
lopezj@ornl.gov

Abstract. This paper presents Similo, an automated scalable frame-
work for control logic forensics in industrial control systems. Similo is
designed to investigate denial of engineering operations (DEO) attacks,
recently demonstrated to hide malicious control logic in a programmable
logic controller (PLC) at field sites from an engineering software (at
control center). The network traffic (if captured) contains substantial
evidence to investigate DEO attacks including manipulation of control
logic. Laddis, a state-of-the-art forensic approach for DEO attacks, is a
binary-logic decompiler for the Allen-Bradley’s RSLogix engineering soft-
ware and MicroLogix 1400 PLC. It is developed with extensive manual
reverse engineering effort of the underlying proprietary network protocol
and the binary control logic. Unfortunately, Laddis is not scalable and re-
quires similar efforts to extend on other engineering software/PLCs. The
proposed solution, Similo, is based on the observation that engineer-
ing software of different vendors are equipped with decompilers. Similo
is a virtual-PLC framework that integrates the decompilers with their
respective (previously-captured) ICS network traffic of control logic. It
recovers the binary logic into a high-level source code (of the program-
ming languages defined by IEC 61131-3 standard) automatically. Similo
can work with both proprietary/open protocols without requiring pro-
tocol specifications and the binary formats of control logic. Thus, it is
scalable to different ICS vendors. We evaluate Similo on three PLCs of
two ICS vendors, i.e. MicroLogix 1400, MicroLogix 1100, and Modicon
M221. These PLCs support proprietary protocols and the control log-
ics written in two programming languages: Ladder Logic and Instruction
List. The evaluation results show that Similo can accurately reconstruct
a control logic from an ICS network traffic and can be used to investigate
the DEO attacks effectively.

Keywords: Control System - SCADA - Forensics - PLC - ICS

1 Introduction

Industrial control systems (ICS) monitor and control our critical infrastructures
such as nuclear plant and gas pipelines. These systems were originally designed

Syed Ali Qasim et al.

to be isolated environments with limited access to the outer world. Increasingly,
they are now connected to the Internet and corporate networks, thereby making
them vulnerable to cyber attacks [3, 18,10, 19].

Unfortunately, the current forensic capabilities are insufficient to investigate
cyberattacks on ICS environments because these environments are significantly
different from traditional IT systems [1,2]. They are connected with physical
processes, have the critical requirement of high availability, and use resource-
constrained computing devices, legacy operating system, and proprietary net-
work protocols.

An ICS consists of control center and field sites. The control center runs
ICS services such as human machine interface (HMI), historian, and engineer-
ing workstation. The fields sites have physical process, and computing devices
such as sensors, actuators, and programmable logic controllers (PLCs). A PLC
maintains a desired actuator state by a control logic and observing the current
state of a physical processes using sensor data. The PLC also communicates the
sensor data and actuator state to control center over a communication channel.

Recently, Senthivel et al. [16] present a new class of ICS attacks, namely,
denial of engineering operations attack (DEQ). In DEO I, an attacker compro-
mises a control logic of a target PLC. When an engineering software attempts
to retrieve the control logic from the compromised PLC, it intercepts the traffic
via man-in-the-middle attack and replaces/removes the malicious logic from the
control logic in the network traffic before forwarding it to the software. Hence,
the engineering software receives a normal (non-malicious) control logic. In DEO
II, which is a variant of DEO I, the attacker replaces a legitimate instruction in a
control logic with noise data such as OxFFFFFF to make the engineering software
malfunction.

The ICS network traffic contains substantial evidence to investigate DEO at-
tacks including manipulation of control logic. The challenge is to reconstruct and
transform the binary control logic (in the traffic dump) into its high-level source
code. The closest effort in this direction is Laddis [16], which is a binary-logic
decompiler for the Allen-Bradleys RSLogix engineering software and MicroLogix
PLC series. Unfortunately, Laddis is not scalable and requires manual reverse
engineering to extend on other engineering software/PLCs.

This paper presents Similo to recover a control logic from an ICS network
traffic automatically. Similo is based on the observation that engineering soft-
ware of different vendors are equipped with a decompiler that transforms a
binary control logic into a high-level language source-code. Similo is an auto-
mated and scalable framework (for control logic forensics), which utilizes the
upload function of an engineering software to integrate a previously-captured
network traffic dump of a control logic with a decompiler in the engineering
software. The framework does not require manual reverse engineering efforts for
proprietary protocols and binary control logic. Thus, it is scalable.

We evaluate Similo on 113 control logic programs at three different levels:
packet-level, functional-level and source-code-level of control logic. We use the
engineering software of two different vendors, Allen-Bradley and Modicon, and

Control Logic Reconstruction for PLC Forensics

v
0000 |BL.K ATML
1.0 ——TON ——— 0001 | LD ENTRY TIMER
0000 — - Timer On Delay —(END>——
0 Timer T4:0 0002 | ™
Bul.1766 Time Base 1.0 |—(DN)>—
Preset 6< 0003 | OUT_BLK
<
Accum o oM | o

0005 | st mXIT_TneR

.ﬂ ¢ END — 0006 | END_BLK

(a) Ladder Logic (b) Instruction List

Fig. 1: Different representations of a timer program

three PLCs supporting two IEC 61131-3 programming languages i.e., Instruction
List and Ladder Logic and two proprietary protocols i.e., PCCC, and M221
proprietary layer encapsulated in Modbus. The evaluation results show that
Similo can engage an engineering software using an ICS network traffic dump
of a control logic including session establishment, echo messages and transferring
of the control logic in the traffic dump to an engineering software. This results in
a correct reconstruction and transformation of a control logic into a source-code.
We further recreate DEO attacks on these PLCs and engineering software and
utilize Similo to investigate them successfully.

2 Background

2.1 Control Logic

Programmable Logic Controller. PLCs are embedded devices that reside on
field-sites to control and monitor physical processes directly. A PLC has input
and output modules. The input module connects input devices such as sensors
that provide temperature and pressure in a pipeline, level of liquid in a tank,
etc. The output module connects with actuators to maintain the desired state
of a physical process. The control logic in a PLC processes the input to set the
output. A PLC also supports network communication (such as Ethernet or serial
port) to communicate with the ICS services in control center such as engineering
software.

PLC Programming. IEC 61131-3 defines five languages to write a control
logic. These languages can be divided into two categories, i) Textual, and ii)
Graphical. Structured text, and Instruction list are textual while Ladder Logic,
Functional Block Diagram, and Sequential Function Chart are graphical. Note
that for the purpose of evaluation, we select one language from each category i.e
Ladder logic (graphical) and Instruction List (textual).

Ladder Logic. Ladder logic is a graphical language and is derived from
Relay Logic. The program is defined in the form of a graphical diagram. A
horizontal line in a Ladder logic program is called rung. A rung comprises of a

Syed Ali Qasim et al.

- Original Infected\\“-—k_i;
" T Program Program
Engineering | —0 0 ————
Software PP Attacker —— PLC
Original Infected
Program Program

Fig.2: DEO Attack I: Hiding infected ladder logic from the engineering software

number of input and output instructions. An instruction defines an operation to
be performed by the processor [4].

Figure la is a ladder logic program consisting of one rung and two instruc-
tions: 1) XIC (Examine if closed) on left is associated with the input address
I:0/0, 2) TON (timer on delay) on right. The timer instruction has three at-
tributes, i) time base (the unit of time, 1.0 means one second). ii) Preset (maxi-
mum time to wait). iii) Accumulator (the time that has passed). It also has two
control bits, EN (enable) and DN (Done).

When the program executes and the XIC is true, it will start the timer and
EN will become true. The preset is 6 and the time-base is one second. When
the timer completes 6 seconds, the DN bit turns to true and the accumulator
is changed to the preset value.

Instruction List. Unlike Ladder Logic, Instruction List resembles assembly
language consisting of sequence of instructions. Figure 1b shows an equivalent
program in Figure la. The first instruction BLK is the start of the timer function
block. The second instruction, LD (load operator) looks for close edge contact,
which is associated with the input %I0.0. The contact is closed when bit %10.0
is 1. The following instructions are as follows: IN represents the input of Timer
function block; Out_BLK wires the output of timer; @ represents the output of
timer, and it becomes 1 when the timer expires; ST is store operator, which is
equivalent to a coil in ladder logic and takes the value of previous logic and is
used to store output. Finally, END_BLK represents the end of the timer function
block [12].

When the program executes and LD is true, it sets IN true and starts the
timer. The timer has a time-base of 1 second and preset of 6 second. When the
timer completes 6 seconds, it sets @ (output of timer) true and then both LD
and @ go into ST. LD and @ are in series. When both LD and @ are true, it
will turn the output ST true.

2.2 Denial of Engineering Operations (DEO) Attack

Recently, Senthivel et al. [16] present denial of engineering operation (DEO)
attacks that jeopardize an engineering software’s capabilities to perform remote-
maintenance on a PLC. They demonstrate the attacks on Allen-Bradley Mi-
croLogix 1400-B and RSlogix 500 (engineering software).

Control Logic Reconstruction for PLC Forensics

- Original Infected =~ _ T
- - Program Program
Engineering | —— —
Soft — Attacker —_— PLC
ortware Maiformed Infected
Decompilation Program Program
Failed

Fig. 3: DEO Attack II: Crashing the decompiler running on Engineering software

1) DEO Attack I. In DEO I (Figure 2), an attacker performs a man-in-the-
middle between a target PLC and an engineering workstation (the computer
running an engineering software). When the control engineer downloads a con-
trol logic program to a compromised PLC, the attacker intercepts the commu-
nications and infects this control logic by replacing some part of the code with
malicious logic before forwarding it to the PLC. Similarly, when the control en-
gineer tries to upload the control logic from the PLC, the attacker intercepts
the traffic and replaces the infected logic with the original code. In this way, the
control engineer remains unaware of the malicious control logic running on the
PLC.

Consider the ladder logic program in Figure 1a, the timer controls the yellow
light in a traffic light signal. The attacker modifies the preset value from 6 seconds
to 80 seconds when the program is downloaded to the PLC of the signal. When
a control engineer attempts to retrieve the program from the PLC, the attacker
intercepts the traffic and change the preset back to its original value i.e., 6.

2) DEO Attack II. DEO II is similar to the DEO 1 in that the attacker
performs a man-in-middle between the engineering workstation and PLC, inter-
cepts the communication, and manipulate the traffic as it passes through the
attacker’s machine. However, in DEO II (Figure 3), the attacker replaces the
original code with random (noise) data such as OxFFFF. When an engineering
software receives the malformed logic, it fails to decompile.

2.3 Challenges in DEO Forensic Investigation

For a forensic investigation of DEO attacks, the network traffic (if captured) con-
tains substantial evidence including manipulation of control logic. The challenge
is to reconstruct and transform the binary control logic (in the traffic dump)
into its high-level source code. Unfortunately, binary control-logic does not have
a standard open format (such as Linux ELF) to allow a generic decompiler. ICS
vendors define their binary control-logic representations. Often, each vendor has
multiple binary representations across their different engineering software to pro-
gram different types of PLCs.

Recall that TEC 61131-3 standard defines five programming languages for
PLCs (such as Structured Text, and Ladder Logic) [9]. An engineering software
often supports only one or two languages. Thus, binary logic must be trans-
formed into their respective high-level languages for forensic investigation, mak-

Syed Ali Qasim et al.

ing the transformation more challenging. Lastly, the engineering software and
PLCs communicate using different ICS protocols that may be proprietary or
may use an open protocol with an embedded proprietary protocol layer. Thus,
reconstruction of binary control logic from a network traffic capture requires
extensive manual reverse engineering of the proprietary protocols.

The closest effort in this direction to develop forensic investigation capa-
bilities for control logic is Laddis [16], which is a binary-logic decompiler for
the Allen-Bradleys RSLogix engineering software and MicroLogix PLC series.
Laddis is developed with the manual reverse engineering of the PCCC protocol
and the binary representation of the high-level ladder logic program written in
RSLogix. Unfortunately, Laddis is not scalable and requires similar efforts to
extend on other engineering software/PLCs.

3 Problem Statement

Given an ICS network traffic dump of a control logic, our goal is to reconstruct
and transform the binary control logic (in the traffic dump) into its high-level
source code. Considering the challenges outlined in Section 2.3, a practical solu-
tion should address at least two basic requirements:

Automation. The solution must be automated to achieve a high-level source
code of a low-level binary control logic in a network traffic without human inter-
vention including reverse engineering of a proprietary ICS protocol and a binary
representation of a high-level control logic.

Scalability. The solution must be scalable to multiple vendor products in-
cluding engineering software (used to create a control logic), proprietary ICS
protocols, and PLCs.

4 Similo - A virtual PLC Framework

4.1 Overview of Similo

We observe that engineering software of different vendors are equipped with
decompilers that can transform a binary control logic into a high-level language
source-code. We propose to integrate a decompiler in engineering software with a
previously-captured network traffic dump of a control logic to obtain the source-
code of the control logic. Our solution is Similo, an automated and scalable
virtual-PLC framework that does not require manual reverse engineering. Similo
utilizes the upload function of an engineering software to achieve the integration.
Upload function. The upload is a required functionality (used by control en-
gineers) to retrieve a binary control logic from a PLC remotely, which further
triggers a decompiler in engineering software to achieve high-level source code
of the control logic.

Generally, when a control engineer runs the upload command in engineering
software, it starts a series of request-response messages between a PLC and
an engineering software such as session-establishment messages, echo messages,

Control Logic Reconstruction for PLC Forensics

g{ompa”?o" Reatd] [PF]| optimization |-27"

(Res(i}) Pairing Groupmg‘ Req(t2) [D.F] — Phase)

- - ¥ [[Req(j,1)] [Real),2) " |[Res(t3) [D.F] Dynamw
Req(j)] (Res(i)) = Res(t3]] [0 Fintis
.) el : (LPDF)

Fig.4: Overview of Learning/Training phase

and control logic messages. Engineering software first establishes a session with
a PLC and then, sends read-request messages to the PLC to read the memory
locations of a control logic. In response, PLC sends the data on the requested
memory locations (i.e., control logic) to the engineering software in the payload
of response messages. After receiving an entire binary control logic, engineering
software passes it to the decompiler to trigger decompilation process, which in
turn produces the source code in a high-level language.

Virtual-PLC framework. To develop Similo, we assess the communication
behavior of the upload function of two engineering software, RSLogix 500 and
SoMachine-Basic with three PLCs, Allen-Bradley’s MicroLogix 1400 and Mi-
croLogix 1100, and Schneider Electric’s Modicon M221. We make two interest-
ing observations that show that the communication behavior is deterministic:
first, an engineering software always makes a small number of unique requests
to retrieve the control logic from a PLC; second, if we send an associated re-
sponse message from a previous network dump as reply to a request message
from engineering software, the next request message from the software will be
same as the next request message in the network traffic dump.

Based on these observations, we design Similo using the wupload function.
Recall that engineering software uses the wupload function to retrieve control
logic from a PLC memory. Similo on the other hand retrieves control logic
from a network traffic (captured during the transfer of the logic). It consists
of a virtual-PLC that responds to the upload function queries using a previ-
ous network traffic dump of a control logic. It handles dynamic protocol fields
in the request-response messages automatically, making it scalable to different
PLCs, proprietary protocols and engineering software. For this paper, we test
Similo successfully on three different PLCs (Micrologix 1400, MicroLogix 1100
and Modicon M221), two ICS protocols (ENIP, and Modbus) and two engineer-
ing software (RsLogix, and SoMachineBasic).

Similo consists of two phases: training, and testing. The training phase pro-
vides understanding of dynamic header fields of messages using benign pcap files
while the testing phase engages an engineering software to respond to the request
messages using the response messages in a network traffic (under investigation)
including updating the header fields.

Syed Ali Qasim et al.
4.2 Learning/Training Phase

Figure 4 presents an overview of the training phase, which consists pairing,
comparison and grouping, and optimization steps for identifying dynamic header
fields in request-response messages.

Pairing. Pairing is the first step to identify an instance of a message in a set of
two benign pcap files from different sessions that contain same control logic. We
assume that the header values of dynamic fields change across multiple sessions.
However, their contents (control logic) remain the same since same control logic
is used on both pcap files. We use two properties of a message to find same
message instance in the pcap files: 1) message length and 2) message content
similarity.

Ideally, we have to compare each message of the first pcap file with all mes-

sages of the second pcap file to find the best match. However, we optimize this
approach by finding a match with 85% threshold (based on our initial experi-
ments) i.e if the length of two messages is same and the similarity is more than
85%, they are considered same and paired together. In our experience, this ap-
proach decreases the time taken for learning significantly without affecting the
functionality of Similo. Note that pairing is used for initial screening of pcap
files and does not assume to achieve 100% accuracy for finding same messages.
The results of pairing are further refined in later stages. Figure 4 show the pair-
ing process, where Req (i,1) and Res (i,1) is a request response pair from pcapl
and Req (i,2) and Res (i,2) is a pair from pcap2.
Comparison and Grouping. After pairing similar messages, Similo performs
differential analysis on each pair, i.e comparing two messages character by char-
acter and records the indices (i.e., locations of bytes) where the values are dif-
ferent. During our experiments, we found that the length of header fields vary in
different request messages due to which the offsets of dynamic fields also vary.
In order to tackle this, Similogroups messages based on length such that all the
messages in one group will have the same header size and structure. There after
Similofind the differences of all message pairs in one group which are further
processed to get the dynamic fields.

Optimization. In this process, the differences identified between the message
pairs in each group are compared with one another and only those indices are
selected that are present in more than 50% of messages. Since the initial pairing
is not 100% accurate, there is a chance that other than the dynamic header
fields, some paired messages may also have little differences in payload too. So
the optimization process filters the differences present in payload. For example
if the differential analysis of three message pairs of length X has resulted in the
following dynamic field indices: (0,1,4,9,19),(0,3,4,15),(1,3,4,22) the resultant
would be (0,1,3,4), which will represent the offsets of dynamic fields in all the
messages in group X. The optimized indices are further divided in different
groups based on the adjacency and each group represents one dynamic field such
as transaction ID, length etc. These dynamic fields might be incomplete/partially
filled but that problem is solved during the testing phase.

Control Logic Reconstruction for PLC Forensics

Request -
Res(i,n)
Engineering | = » | Communication Server |«———— | Reconstructor
Software N
Response
[Req(in]]
J—
Identifier -
Target Pcap
Res(i Database .
Req(j)] [Res(j)) | mm— | Reqli,T) |[Res(i,T) TPDF Field Analyzer | tm—
' ’ Req(j,T) || Res(},T)

Fig. 5: Overview of Testing phase

After these steps, Similo gets the indices of dynamic fields in all the request-
response messages present in one set of pcap files. The same process is repeated
with other pcap files and finally the results of all the files are again compared and
analyzed using the majority rule and the information and the resulting dynamic
fields, referred to as Learning Phase Dynamic Fields (LPDF), are used in testing
phase.

4.3 Testing Phase

Figure 5 shows an overview of the testing phase. After completing the training
phase, Similo takes a target pcap file, extracts request and response messages,
and then, stores them in database in the form of request and response pairs. Af-
terwards, it starts the communication server and waits for the message from the
engineering software initiated by the upload function. Upon receiving a request,
the communication server forwards it to the Identifier. The identifier performs
two tasks. First, it finds the same request message (based on content) in the
database. Second, it compares the two messages and identifies the dynamic fields
between these two request messages. We call them training phase dynamic fields
(TPDF).

The identification is similar to pairing since it uses message length and con-
tent similarity. However, at this stage, we have information about the dynamic
fields from the learning phase. Note that the dynamic fields are present in the
header and the later part contains the control logic. For every request message
with the same length as of the new request message, instead of comparing the
whole message, the identifier only compares the part that lies beyond the last
dynamic field determined by learning phase.

The grouping of messages based on length helps Similo in performing the
look up efficiently. The identifier selects the request message with highest sim-
ilarity with a new request message. It then, passes the request along with the
request-response pair from the database to Reconstructor. Similarly, the testing
phase dynamic fields are passed to Field analyzer.

Syed Ali Qasim et al.

Learning phase Testing phase Combined dynamic
dynamic fields dynamic fields fields

OVerlap ((0,1,2),(6,7)) ((213)!(9)) ((0r11213)r(617))
Adjacent ((0:1!2)!(6!7)) ((3}r(9)) ((0!]-'2:3):(6}7)}
Confined ((0,1,2),(6,7)) ((1).(9)) ((0,1,2)(6,7))

Fig. 6: Accumulation example of dynamic fields in learning and testing phases

Field Analyzer. We know the location and tentative size of dynamic fields in
a message, however we still have to ascertain the boundary of the fields. To find
complete fields, field analyzer compares the dynamic fields from learning phase
with the dynamic fields from the testing phase. Specifically, if any dynamic field
from the TPDF overlaps, is adjacent to, or is confined in any dynamic field
from the LPDF, Field analyzer combines it with the dynamic field from learning
phase otherwise it discards it. Figure 6 explains the working of Field Analyzer.
In the first case two fields were identified in the testing phase i.e (2,3) and (9).
Since (2,3) is overlapping one of the LPDF| it is combined with it resulting in
(0,1,2,3) where as (9) is not overlapping, adjacent or confined in any of the LPDF
so it is discarded. Similarly the second and third case explains the Adjacent and
Confined scenarios.

It is still possible that even after this combination some fields are partly

empty. That means the values at those indices remain same in both sessions,
thus we do not need to change them for reconstructing the response message.
The final dynamic fields are forwarded to Reconstructor.
Reconstructor. It is the last component in Similo, which takes request-response
messages from the target pcap and the dynamic field offsets from the Field an-
alyzer. The dynamic fields in a target request message are mapped to its paired
response message. If the values are same, reconstructor changes the values of dy-
namic fields in the response message according to the values in the new request
message and forwards this message to the communication server. The communi-
cation server then sends this response message to the engineering software and
waits for next request and so on. This process finally makes the engineering
software to recover the control logic from the network dump.

5 Implementation

We have implemented Similo in python and used scapy [14] for network packet
manipulation. During the learning phase, Similo makes dictionaries from the
pcap files. The request and response messages are filtered on the basis of IP
address and port. The transport layer payloads of request and response messages
are converted to hex streams and used as keys and values.

To calculate similarity, we use SequenceMatcher from difflib library [8]. Fur-
thermore, Similo compares both sets of requests and response messages present
in each tuple, character by character and the differences are stored in a dictio-
nary, where length of request message represents the key and value is a list of

Control Logic Reconstruction for PLC Forensics

arrays of differences generating from each comparison. These differences are later
processed to get the offsets of dynamic fields within a packet via Optimization.

The optimization uses a majority rule to separate the protocol related dy-
namic fields from the rest. For each message type (based on length), it calculates
the number of instances of each offset. If an offset appears in majority (more
than 50% or user defined threshold), it is considered as part of dynamic field
and used in the testing phase, otherwise, it’s ignored.

During our research, we found that generally, the PLCs have fixed ports
for communicating with the engineering software e.g Allen-Bradley MicroLogix
1100 and 1400 use port 44818, Modicon M221 uses port 502. Thus, in the testing
phase, using the socket library, Similo opens a server socket (communication
server) using socket on the default ports of real PLCs and waits for message
from the engineering software. After getting a target pcap file from the user, it
generates the database i.e dictionary using the method explained.

The identifier is a search function that takes a request message from the server
Req (i,n) and iterates on the database keys to finds same request message with
different dynamic fields (reg_t). For this purpose, it uses the length and similarity
of static fields. After finding same request from the target pcap Req(i,T), it
compares these two requests to find the differences. The Identifier then passes
the Req (i,n), Req (i,T) and Res (i,T) to the reconstructor and TPDF to the
Field analyzer.

The field analyzer function takes two inputs: LPDF, and TPDF. 1t iterates
over both of them and if any TPDF fields are adjacent, overlap or one is confined
in the boundary of a LPDF, it combines the two, otherwise, it ignores the TPDF
(Figure 6). The output of this function is an array of arrays containing dynamic
field offsets. Finally the Reconstructor function takes the Req(i,n), Req(i,T) and
Res (i,T) from the Identifier and the final set of dynamic fields from the Field
analyzer. It maps the dynamic fields in Req (3,T) on Res (i,T) to check if the
values of dynamic field in the request and response message are same. If it is true,
it edits the Res (i,T) by changing the value of dynamic fields according to the
new request R (i,n) and forwards the new response message to the communication
server, which then sends it to the engineering software.

6 Evaluation

Lab Setup. We evaluate Similo on three PLCs Allen-Bradley MicroLogix 1400
Series B, Allen Bradley MicroLogix 1100 Series B, and Schneider Electric Mod-
icon M221. The engineering softwares used for the first two PLC is RSLogix
500 V9.2.01 and M221 is evaluated on SoMachine Basic v 1.6 and v 1.4. Both
programming software run on Windows 7 virtual machine (VM) and the virtual-
PLC runs on a VM with Ubuntu v 16.04. The engineering software, PLCs and
virtual-PLC all were connected via Ethernet.

Experiment Methodology. A typical experiment includes capturing the net-
work traffic when an engineering software uploads a control logic from a real

Syed Ali Qasim et al.

Table 1: Dataset summary of Ladder logic programs for MicroLogix 1100

File Information Rung Instruction
sizjl(IIe{B) # of Files|Min|Max|Total|Avg. Min|Max|Total| Avg
0-40 16 2 17 90 |5.62| 3 48 | 240 15
41-60 1 4 4 4 4 12 | 12 12 12
61-80 4 8 63 | 145 |36.25| 25 | 245 | 543 |135.75
81-100 1 13 | 13 13 13 | 37 | 37 37 37
Total 22 - - 252 - - - 832 -

Table 2: Dataset summary of Ladder logic programs for MicroLogix 1400

File Information Rung Instruction
siz(f‘l(lIe{B) #ilgi Min|Max|Total| Avg. /Min|Max|Total| Avg
20-40 21 1 17 99 |4.71] 1 48 | 276 | 13.14
41-60 8 4 | 48 93 |10.33| 4 53 | 344 | 38.88
61-80 7 8 63 | 149 [22.57| 28 | 245 | 577 |96.166
81-100 13 | 15 28 14 | 15 | 37 52 26
101-120 1 10 | 10 10 10 | 23 | 23 23 23
Total 39 - - 379 - - - |1272] -

PLC. Similo uses the pcap files and communicates with the engineering soft-
ware to recover the control logic. At the end, two programs are compared in the
engineering software manually to find accuracy of the virtual PLC.

Dataset. For the evaluation of the PLCs, Allen-Bradley MicroLogix 1400 and
MicroLogix 1100, we use 39 and 22 different Ladder logic programs respectively.
For Modicon M221, we use 52 Instruction List programs. These programs were
written for different physical processes such as traffic light, hot water tank,
elevator, gas pipeline, and vending machines, and are of varying complexity and
sizes. Tables 1, 2 and 3 show the features of the datasets for MicroLogix 1400
and 1100, and Modicon M221 respectively.

6.1 Virtual PLC as a Device

Similo establishes and maintains a connection with engineering software as a
real PLC. We evaluate it with two engineering software i.e RSlogix and SoMa-
chine Basic and conclude that both software recognize Similo as a device and
does not distinguish between real PLC and Similo. Figure 1 shows the out-
come of the experiments where Similo is recognized as a real MicroLogix 1100,
MicroLogix 1400 and Modicon M221 PLC. The experiments are performed as
follows.

To connect Allen-Bradley MicroLogix 1100 and 1400 to the engineering work-
station, the user has to manually configure a driver in the RSlinx Classic. For

Control Logic Reconstruction for PLC Forensics

Table 3: Dataset summary of Instruction List programs for Modicon M221
File Information Rung Instruction
File # of
size (KB)| Files
60-80 30 1 3 72 | 24| 2 | 23 | 793 |264

Min|Max|Total|Avg.|Min|Max|Total|Avg

80-100 14 2 27 | 107 | 7.64| 7 | 112 | 463 | 33

100-130 4 8 14 43 110.75| 20 | 72 | 153 [38.2
130+ 4 12 | 26 63 16 | 36 | 118 | 269 [67.2
Total 52 - - 286 - - - |1678| -

Ethernet communication the user can select either EtherNet/IP driver or Eth-
ernet devices driver. In case of Ethernet device driver the user has to give the
IP address of the PLC device while EtherNet/IP driver searches the subnet to
discover the PLC devices. In our experiments we configured Ethernet devices
driver (AB_ETH-1) and gave it the IP address of Similo as shown in red circles
in Figure 7a and Figure 7b, Rslinx classic identified Similo as a real MicroLogix
1100 and MicroLogix 1400 PLCs.

Similarly, in SoMachine Basic, user can either give the IP address of the PL.C
or browse the subnet with the help of refresh devices function available (marked
in the figure). In our experiment we provide SoMachine Basic the IP address of
Similo. Figure 7c shows that SoMachine Basic identified Similo as a real PLC
(TM221CE16R).

6.2 Function-level Accuracy

To successfully imitate a real PLC, Similo has to perform three tasks i.e i) es-
tablish a connection with the engineering software ii) handle non-control logic
messages such as echo, and iii) upon receiving an upload request from the engi-
neering software, correctly uploading the control logic (present in the pcap file).
In this section, we evaluate the ability of Similo to establish and maintain a
stable connection with the engineering software and upload the correct control
logic to the engineering software.

Session establishment and maintenance. Note that apart from the trans-
ferring control logic, engineering software also sends ping (echo) messages and
other functional commands to PLC. To test the robustness of Similo in estab-
lishing and maintaining the the connection, we perform the following experiment.
Both RSLgix 500 and SoMachine Basic initiates a connection with Similo and
keeps it open for few minute without requesting for an upload. During these
experiments, Similo maintained the connection successfully in 113 cases.

Transfer Accuracy. After establishing and maintaining the session success-
fully, the next task of Similo is to upload a given control logic in network traffic
correctly. As mentioned in section 4, the upload function of engineering software
sends a series of read requests to the PLC. In the beginning the engineering soft-
ware gets the program storage information/metadata of the control logic from

Syed Ali Qasim et al.

==, Workstatien, VM_PLC
39,5 Linx Gateways, Ethernet
F-&5 AB_DFL-1, DH-485
S AR ETH-1, Ethernet

== Workstation, VM_PLC
E?E Linx Gateways, Ethernet
G-#5 AB_DFL-1, DH-485

525 AB_ETH-1, Ethernet

[17222192204, MicrolLogix 1100, UNTITLED 9 17222152000, NicroLogix 1400, UNTITLED |
3,55,5 AB_ETH-2, Ethernet - ABETH-2, Ethernet
5.5 ABETHIP-1, Ethernet (- AB_ETHIP-1, Ethermet

(a) Similo recognized as MicroLogix 1100 (b) Similo recognized as MicroLogix 1400
by Rockwell Automation’s RSLogix 500 by Rockwell Automation’s RSLogix 500

Local Devices Ethemet Devices % !
B

utton to search for PLC
on the subnet

Remote Lookup

Unit ID

Found:
Raference Firnrware I PC and controller applications are different
) L. A new controller firmware version is available: 1.6.2.0
Confroller TM221CE16R 1.6.0.1 Controller firmware can only be updated via USB
Modulel TM3AQ2 20

(c) Similo recognized as Modicon M221 by Schneider Electric’s
SoMachine Basic

Fig. 7: Similo recognized as a real PLC (MicroLogix 1100 and 1400 and Modicon
M221) by two engineering software, RSLogix 500 and SoMachine Basic

the PLC, then it starts reading the control logic binary from the PLC memory.
During the upload process, upon receiving the request message, Similo searches
for a response message in its database and sends the reply after editing the
dynamic/session dependant fields.

At this stage, any changes other than the dynamic fields can disrupt the
connection between the engineering software and PLC or damage the integrity
of control logic. Our experiments show that Similo identified and edited the
dynamic fields successfully while preserving the integrity of control logic being
uploaded. Furthermore, we analyze Similo’scapability to reverse-engineer the
ICS proprietary protocols. To evaluate the accuracy of Similo, we manually
calculated the number of rungs and instructions in each of the 113 control logic
files and transferred them one by one with Similo to the engineering software.
After each upload, the program was compared with the original files to see if the
number of rungs and instructions are the same. To further check the integrity
of control logic transferred by Similo, the instructions in original and Similo-
transferred control logic were compared manually to check their order on the
rung. Similarly, the values of other variables, such as timer preset, and timer
base were also compared with the original program.

Control Logic Reconstruction for PLC Forensics

Table 4: Transfer accuracy of Similo

PLC #1:;i§01;2201 Original Program Similo Output Accuracy
uploaded |Rungs|Instructions/Rungs|Instructions %
Mic;f(%’gix 22 252 832 252 832 100%
Mic;zg“ggix 39 379 1272 379 1272 100%
Ml\‘jl‘;‘;fn 52 286 1678 286 1678 100%

MicroLogix 1400. For Allen-Bradley MicroLogix 1400 PLC, 39 ladder-logic
programs containing 379 rungs and 1272 instructions were uploaded. Similo
showed 100% accuracy in establishing connection, basic communication and con-
trol logic upload. Moreover, in all cases, the original programs and the ones up-
loaded by Similo were identical. Table 4 shows the transfer accuracy of Similo.

MicroLogiz 1100. To evaluate the accuracy of Similo on MicroLogix 1100,
we used 22 ladder-logic programs of varying complexities containing 252 rungs
and 832 instructions. Similo was able to upload all programs with 100% transfer
accuracy.

Modicon M221. Modicon M221 was evaluated using 52 different programs
in Instruction-list, comprising of 286 rungs and 1678 instructions. These pro-
grams varied in terms of complexity ranging from as minimum as one rung and
two instructions per program to more than 20 rungs and 100+ instructions per
program. During our experiments Similo showed 100% accuracy in uploading
the control logic from the pcap files.

6.3 Packet-Level Accuracy

One of the main heuristics in developing Similo is the deterministic behaviour
of engineering software. The engineering software uses same set of messages to
initiate a connection or request for upload. Thus, keeping the deterministic be-
haviour of the engineering software in mind, if Similo has a complete network
traffic of a previous session, it can use it to communicate with the engineer-
ing software with a high probability that all request-messages from engineering
software can be found in the network traffic. The results from our experiments
strengthens this theory.

This section evaluates Similo’s ability to identify a given request-message in
the database (target pcap file). Table 5 shows the results of packet-level accuracy
of Similo. During the process of uploading 52 control logic programs as Modicon
M221, Similo received 8800 request messages from the engineering software. Out
of these, 8776 message of same as length and average similarity of 99.99 % were
present in the database. For the remaining 24 messages, Similo selected the
request message with the closest length. In this case the average similarity of

Syed Ali Qasim et al.

Table 5: Packet-level accuracy of Similo

prc No.of | Reauest o orasent DB | not presont m DB
No. |Avg. Similarity %|No.|Avg. Similarity %
Micf;’g“ggix 22 1639 1639 100% 0 -
Mic{;’;“(‘)’gix 39 4219 4219 100% 0 -
M&‘;‘;f“ 52 8800 8776 99.99% 24 56.39%

the messages selected by Similo is 0.58%. Although this similarity is not perfect,
but the engineering software accepted the response message from Similo without
crashing or giving errors and the overall behaviour of the communication does
not change. Similarly, for MicroLogix 1400, while uploading 39 control logic files,
Similo received 4219 messages and all of these were present in the database with
average similarity of 100%. For MicroLogix 1100, during the upload process,
Similo received 1639 and all of them were present in the database (target pcap
files) with 100% accuracy.

6.4 Forensic Analysis using Similo

To evaluate Similo for a forensic analysis of a real cyberattack, we used two
denial of engineering operations (DEQO) attacks for Allen-Bradley MicroLogix
1400, presented by Senthival et al. [16]. This section contains the attack summary
and execution details along with a forensic analysis using Similo.

DEO Attack I: Hiding infected ladder logic (running in the PLC)
from engineering software. In the first attack, the attacker performs a man-
in-the-middle between PLC and the engineering workstation (computer running
the engineering software). When a ladder logic program is downloaded to the
PLC, the attacker replaces some portion of the original program with malicious
logic. When a control engineer attempts to retrieve the program running on the
PLC, the attacker intercepts the communication and replaces the infected logic
with the original logic. In this way, the engineering software shows the original
program and the attacker deceives the engineer successfully.

Attack Ezecution. To achieve the man-in-the-middle, we used ARP poising
via Ettercap. The program used for this attack was designed to control the traffic
light. It contains three timers, each controlling one of the signal lights (red,
orange, green). The goal of the attack is to make a change in the timing of green
light. The timer instruction consists of three parameters i.e base, preset and
accumulated. The preset value controls the amount of time. So to achieve the
goal, when the Control engineer downloads this program to the PLC (MicroLogix
1400), using a custom built Ettercap filter, we change the value of preset from
20 to 80. Now the green light will stay ON for 80 seconds instead of 20. Similarly
when the control engineer uploads the ladder logic program from the PLC, we

Control Logic Reconstruction for PLC Forensics

192.168.10.105(f4:53:33:a0:d4:5b) PLC --------- > 192.168.10.102(00:24:9b:30:6b:d2) Attacker
T4:0 TON
0002 == Timer OnDelay = EN
DN Timer T4:1
Time Base 1.0 | DN3+—
Preset
Accum 0=<
Fig. 8: Control logic from PLC to Attacker
192.168.10.105(00:24:9b:30:6b:d2) Attacker --------- >192.168.10.102 (00:24:9b:30:6b:d1)
Engineeringsoftware
T4:0 TON
0002 == Timer OnDelay =EN
DN Timer T4:1
Time Base 1.0 —DN»—
Preset
Accum 0=

Fig.9: Control logic from Attacker to Engineering Workstation

replace the preset value back to 20 and the control engineer only sees the original
program on the engineering software. Thus, the PLC runs the infected ladder
logic but the Control engineering is not aware of this infection.

Forensic analysis. To investigate the DEO attack, we use Similo to recover
both instances of the control logic in a network traffic capture i.e., one between
the engineering software to the attacker, and the other between attacker and the
PLC. We utilize MAC addresses to separate the network traffic. Figure 8 and
Figure 9 show the recovered instances of the control logic, one is original where
the other is manipulated by the attacker by changing the timer preset value from
20 to 80.

DEO Attack II: Crashing an engineering software. In the second DEO
attack, the attacker performs a man-in-the-middle between the PLC and the
workstation. Whenever a control engineer tries to upload a ladder logic program
from a target PLC, the attacker intercepts the traffic and modifies the ladder
logic instructions by adding random noise such as the sequence of 0xFF bytes.
Apparently, it fails the decompilation process in engineering software. This DEO
attack is a denial of service, which jeopardizes a control engineer’s capability to
retrieve the program running on the PLC using engineering software.

Attack FExecution. Similar to the first attack, the attacker uses ARP poi-
soning (with Ettercap) to achieve man-in-the-middle. When a control engineer
tries to upload the code from a target PLC, the attacker intercepts the communi-
cation and replaces a genuine instruction with a malfunctioning one. Figure 10b
and Figure 10c show the original and malformed messages.

Forensic Analysis. To investigate the DEO attack, we use MAC addresses
to separate the two instance of the control logic, and then utilize Similo to

Syed Ali Qasim et al.

PCCC) fd d9 cd 00 @0 6f 88 1b 068 |od 84 9e 67' 00 a9
Transactiom E]E’Ilﬁc 81 60 00 B8 62 4b B2 80 00 09 00 08

ID @0 02 00 02WCeNpLander’] CENIPSEREH® ©2 e [ef]

(a) Request message from the engineering software

ENIP Session
ENIP sender Handle
JPCCC context Response
Transaction .5 >4 27 oo @0 sf{'ana 65 00[ed 84 9e 67| (command
3 X&.Jﬁﬂsc @1 00 PP 8 62 4b 02|08 90 00 9O 00 89
o, | 84 92 00 81 @@ ©1 @0 A1 91 P8 54 80
88 |e1 78| aiOriginal instruction
06l o8 00 ©Pa 94 da 4f ©d ©© 58 91 @a 68 96 P4 ce

(b) Response message from PLC to attacker

YUY a> TENIPsender/? [fiiiismmti ba ac 1b c¥ cC ac 16

ENIP Session
c® 86 acontext Fa Handle a7 29 ab c6 f3 5@ 18
PCCC e5 71 ac eeNOe ot ©e 6?% 8d 84 9e 67|00 00

Transaction g l6c 91 00 00 08 3e 4a 02|00 O/Responsel 0p 00O

_ ™\ 00 00 04 02 00 81 00 01 00 00 9 command o @
00|01 78 |oe 00 8d 9a 20 0QFFF Ff ff ff ff ff T

=8 00 [Attacker's modified instruction @1 ©a 08 96 84 ce

(c) Malformed response from attacker to Engineering software

Fig. 10: Request and response packets that crash the decompiler

attempt to recover the control logic. To identify malformed control logic packet
between engineering software and attacker, we initiate the upload function. How-
ever, the malformed packet disrupts the engineering software and makes it un-
available for further communication with Similo. Similo identifies the packet
that has caused the disruption since no further communication is possible after
the packet is transmitted. Figure 10 shows response message from both benign
and manipulated control logic. Figure 10(c) is identified by Similo.

To recover the second (malicious) instance of the control logic between the
attacker and infected PLC, Similo utilizes the upload function again and trans-
mit the control logic to the engineering software successfully, resulting in the
recovery of the logic to high-level source code.

7 Related Work

When a PLC is compromised by an adversary, it can have disastrous effect on
ICS infrastructures. For instance, Stuxnet damages a nuclear plant physically

Control Logic Reconstruction for PLC Forensics

and it does so by changing the frequency of a motor drive controlling the speed
of a centrifuge [6].

Valentine et al. [17] mentioned that a simple intentional or unintentional
error in ladder logic can disrupt the availability and integrity of a target PLC.
For example, if output coil is removed in ladder logic, the code will still compile
and run on the PLC. However, it will not trigger an intended alarm disrupting
the functionality of the PLC.

Kotler et al. [11] say due to limited resources installing an additional program
on PLC to check the control logic programs is difficult and it will put extra
computational burden on the PLC. The authors propose a method using formal
verification to detect malicious or faulty PLC programs. They used NuSMV
to perform the formal verification. Cheung et al. proposed [7]a model based
intrusion detection technique for SCADA network that monitors Modbus TCP.

Patel et al. recognize [13] that many private protocols exists in SCADA
networks. Since most of these proprietary protocols are designed to maximize
performance only few of them have built-in security features like message au-
thentication. Attackers can use reverse engineering approach to get the commu-
nication and network information.

Beresford et al. [5] presented different way to attack Siemens Simatic S7
PLC by reverse engineering and modifying International Standards Organiza-
tion Transport Service Access Point protocol (the standard protocol for commu-
nicating with and programming all S7 Programmable Logic Controllers made by
Siemens). Using a replay attack the attacker can perform all the tasks a normal
engineering software do like turning off the CPU, disabling memory protection
and uploading new project files to the PLC.

After the attack there are very few tools that can analyze the network cap-
ture and extract the control logic transferred during the attack. Moreover the
available tools focus on one protocol or control logic language. Senthivel et al.
[15] made Cutter, a tool to extract the PCCC traffic from network capture. This
tool parses the pcap files according to protocol specific tags. Cutter only extracts
the PCCC data from the files so the authors made another tool Laddis, which de-
compiles the files extracted by cutter to get the high level control logic code from
binaries. These tools are developed entirely on reverse engineering and are only
limited to PCCC protocol extraction and decompilation. This raises the need of
a generic tool which can use network dump to get the high level presentation of
control logic and Similo tries to solve that problem

8 Conclusion

We presented a fully-automated framework Similo to recover a control logic
from an ICS network traffic. Similo integrated a previously captured ICS traffic
with the decompiler and handled dynamic header fields automatically without
manual reverse engineering. We evaluated Similo on three different PLCs and
two protocols of two different ICS vendors to show that Similo supported mul-
tiple vendors successfully. Furthermore, Similo was evaluated on the denial of

Syed Ali Qasim et al.

engineering operations attacks and recovered the malicious and original control
logic from the network traffic accurately.

References

11.

12.

13.

14.
15.

16.

17.

18.

19.

Ahmed, 1., Obermeier, S., Naedele, M., Richard III, G.G.: SCADA Systems: Chal-
lenges for Forensic Investigators. Computer 45(12), 44-51 (Dec 2012)

Ahmed, I., Obermeier, S., Sudhakaran, S., Roussev, V.: Programmable Logic Con-
troller Forensics. IEEE Security Privacy 15(6), 18-24 (November 2017)

Ahmed, I., Roussev, V., Johnson, W., Senthivel, S., Sudhakaran, S.: A SCADA
System Testbed for Cybersecurity and Forensic Research and Pedagogy. In: Pro-
ceedings of the 2nd Annual Industrial Control System Security Workshop (ICSS)
(2016)

AllenBradlry: User manual, https://literature.rockwellautomation.com/idc/
groups/literature/documents/um/1763-um001_-en-p.pdf

Beresford, D.: Exploiting siemens simatic s7 ples (2011)

Chen, T.M., Abu-Nimeh, S.: Lessons from stuxnet. Computer 44(4), 91-93 (2011)
Cheung, S., Dutertre, B., Fong, M., Lindqvist, U., Skinner, K., Valdes, A.: Using
model-based intrusion detection for scada networks. In: Proceedings of the SCADA
Security Scientific Symposium. Miami Beach, Florida (Jan 2007)

diflib: https://docs.python.org/3/library/difflib.html

IEC: IEC 61131-3, https://www.sis.se/api/document/preview/562735/

. Kalle, S., Ameen, N., Yoo, H., Ahmed, I.: CLIK on PLCs! Attacking Control Logic

with Decompilation and Virtual PLC. In: Proceeding of the 2019 NDSS Workshop
on Binary Analysis Research (BAR) (2019)

Kottler, S., Khayamy, M., Hasan, S.R., Elkeelany, O.: Formal verification of ladder
logic programs using nusmv. In: SoutheastCon 2017. pp. 1-5 (March 2017)
Modicon: SoMachine Basic - Generic Functions Library Guide, https://www.
schneider-electric.com/en/download/document/EI00000001474/

Patel, S.C., Bhatt, G.D., Graham, J.H.: Improving the cyber security of scada
communication networks. Commun. ACM 52(7), 139-142 (Jul 2009)

Scapy: https://scapy.net/

Senthivel, S., Ahmed, I., Roussev, V.: SCADA Network Forensics of the PCCC
Protocol. Digit. Investig. 22(S), S57-S65 (Aug 2017)

Senthivel, S., Dhungana, S., Yoo, H., Ahmed, I., Roussev, V.: Denial of Engineering
Operations Attacks in Industrial Control Systems. In: Proceedings of the Eighth
ACM Conference on Data and Application Security and Privacy. pp. 319-329.
CODASPY ’18, ACM, New York, NY, USA (2018)

Valentine, S., Farkas, C.: Software security: Application-level vulnerabilities in
scada systems. In: 2011 IEEE International Conference on Information Reuse In-
tegration. pp. 498-499 (Aug 2011). https://doi.org/10.1109/IR1.2011.6009603
Yoo, H., Ahmed, I.: Control logic injection attacks on industrial control systems. In:
Dhillon, G., Karlsson, F., Hedstréom, K., Ziquete, A. (eds.) ICT Systems Security
and Privacy Protection. pp. 33—48. Springer International Publishing, Cham (2019)
Yoo, H., Kalle, S., Smith, J., Ahmed, I.: Overshadow plc to detect remote control-
logic injection attacks. In: Perdisci, R., Maurice, C., Giacinto, G., Almgren, M.
(eds.) Detection of Intrusions and Malware, and Vulnerability Assessment. pp.
109-132. Springer International Publishing, Cham (2019)

